`ultralytics 8.1.26` `LoadImagesAndVideos` batched inference (#8817)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/8234/head^2 v8.1.26
Glenn Jocher 9 months ago committed by GitHub
parent 1f9667fff2
commit 7451ca1f54
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 2
      .gitignore
  2. 2
      docs/en/reference/data/loaders.md
  3. 4
      docs/en/reference/utils/files.md
  4. 3
      tests/test_python.py
  5. 2
      ultralytics/__init__.py
  6. 2
      ultralytics/cfg/__init__.py
  7. 13
      ultralytics/data/build.py
  8. 127
      ultralytics/data/loaders.py
  9. 3
      ultralytics/engine/model.py
  10. 196
      ultralytics/engine/predictor.py
  11. 5
      ultralytics/trackers/track.py

2
.gitignore vendored

@ -29,7 +29,7 @@ MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
# before PyInstaller builds the exe, so as to inject date/other info into it.
*.manifest
*.spec

@ -23,7 +23,7 @@ keywords: Ultralytics, data loaders, LoadStreams, LoadImages, LoadTensor, YOLO,
<br><br>
## ::: ultralytics.data.loaders.LoadImages
## ::: ultralytics.data.loaders.LoadImagesAndVideos
<br><br>

@ -38,3 +38,7 @@ keywords: Ultralytics, utility functions, file operations, working directory, fi
## ::: ultralytics.utils.files.get_latest_run
<br><br>
## ::: ultralytics.utils.files.update_models
<br><br>

@ -8,6 +8,7 @@ import cv2
import numpy as np
import pytest
import torch
import yaml
from PIL import Image
from torchvision.transforms import ToTensor
@ -169,8 +170,6 @@ def test_track_stream():
Note imgsz=160 required for tracking for higher confidence and better matches
"""
import yaml
video_url = "https://ultralytics.com/assets/decelera_portrait_min.mov"
model = YOLO(MODEL)
model.track(video_url, imgsz=160, tracker="bytetrack.yaml")

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = "8.1.25"
__version__ = "8.1.26"
from ultralytics.data.explorer.explorer import Explorer
from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld

@ -396,7 +396,7 @@ def handle_yolo_settings(args: List[str]) -> None:
def handle_explorer():
"""Open the Ultralytics Explorer GUI."""
checks.check_requirements("streamlit")
LOGGER.info(f"💡 Loading Explorer dashboard...")
LOGGER.info("💡 Loading Explorer dashboard...")
subprocess.run(["streamlit", "run", ROOT / "data/explorer/gui/dash.py", "--server.maxMessageSize", "2048"])

@ -11,7 +11,7 @@ from torch.utils.data import dataloader, distributed
from ultralytics.data.loaders import (
LOADERS,
LoadImages,
LoadImagesAndVideos,
LoadPilAndNumpy,
LoadScreenshots,
LoadStreams,
@ -150,34 +150,35 @@ def check_source(source):
return source, webcam, screenshot, from_img, in_memory, tensor
def load_inference_source(source=None, vid_stride=1, buffer=False):
def load_inference_source(source=None, batch=1, vid_stride=1, buffer=False):
"""
Loads an inference source for object detection and applies necessary transformations.
Args:
source (str, Path, Tensor, PIL.Image, np.ndarray): The input source for inference.
batch (int, optional): Batch size for dataloaders. Default is 1.
vid_stride (int, optional): The frame interval for video sources. Default is 1.
buffer (bool, optional): Determined whether stream frames will be buffered. Default is False.
Returns:
dataset (Dataset): A dataset object for the specified input source.
"""
source, webcam, screenshot, from_img, in_memory, tensor = check_source(source)
source_type = source.source_type if in_memory else SourceTypes(webcam, screenshot, from_img, tensor)
source, stream, screenshot, from_img, in_memory, tensor = check_source(source)
source_type = source.source_type if in_memory else SourceTypes(stream, screenshot, from_img, tensor)
# Dataloader
if tensor:
dataset = LoadTensor(source)
elif in_memory:
dataset = source
elif webcam:
elif stream:
dataset = LoadStreams(source, vid_stride=vid_stride, buffer=buffer)
elif screenshot:
dataset = LoadScreenshots(source)
elif from_img:
dataset = LoadPilAndNumpy(source)
else:
dataset = LoadImages(source, vid_stride=vid_stride)
dataset = LoadImagesAndVideos(source, batch=batch, vid_stride=vid_stride)
# Attach source types to the dataset
setattr(dataset, "source_type", source_type)

@ -24,7 +24,7 @@ from ultralytics.utils.checks import check_requirements
class SourceTypes:
"""Class to represent various types of input sources for predictions."""
webcam: bool = False
stream: bool = False
screenshot: bool = False
from_img: bool = False
tensor: bool = False
@ -32,9 +32,7 @@ class SourceTypes:
class LoadStreams:
"""
Stream Loader for various types of video streams.
Suitable for use with `yolo predict source='rtsp://example.com/media.mp4'`, supports RTSP, RTMP, HTTP, and TCP streams.
Stream Loader for various types of video streams, Supports RTSP, RTMP, HTTP, and TCP streams.
Attributes:
sources (str): The source input paths or URLs for the video streams.
@ -57,6 +55,11 @@ class LoadStreams:
__iter__: Returns an iterator object for the class.
__next__: Returns source paths, transformed, and original images for processing.
__len__: Return the length of the sources object.
Example:
```bash
yolo predict source='rtsp://example.com/media.mp4'
```
"""
def __init__(self, sources="file.streams", vid_stride=1, buffer=False):
@ -69,6 +72,7 @@ class LoadStreams:
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
n = len(sources)
self.bs = n
self.fps = [0] * n # frames per second
self.frames = [0] * n
self.threads = [None] * n
@ -76,6 +80,8 @@ class LoadStreams:
self.imgs = [[] for _ in range(n)] # images
self.shape = [[] for _ in range(n)] # image shapes
self.sources = [ops.clean_str(x) for x in sources] # clean source names for later
self.info = [""] * n
self.is_video = [True] * n
for i, s in enumerate(sources): # index, source
# Start thread to read frames from video stream
st = f"{i + 1}/{n}: {s}... "
@ -109,9 +115,6 @@ class LoadStreams:
self.threads[i].start()
LOGGER.info("") # newline
# Check for common shapes
self.bs = self.__len__()
def update(self, i, cap, stream):
"""Read stream `i` frames in daemon thread."""
n, f = 0, self.frames[i] # frame number, frame array
@ -175,11 +178,11 @@ class LoadStreams:
images.append(x.pop(-1) if x else np.zeros(self.shape[i], dtype=np.uint8))
x.clear()
return self.sources, images, None, ""
return self.sources, images, self.is_video, self.info
def __len__(self):
"""Return the length of the sources object."""
return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
return self.bs # 1E12 frames = 32 streams at 30 FPS for 30 years
class LoadScreenshots:
@ -243,10 +246,10 @@ class LoadScreenshots:
s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "
self.frame += 1
return [str(self.screen)], [im0], None, s # screen, img, vid_cap, string
return [str(self.screen)], [im0], [True], [s] # screen, img, is_video, string
class LoadImages:
class LoadImagesAndVideos:
"""
YOLOv8 image/video dataloader.
@ -269,7 +272,7 @@ class LoadImages:
_new_video(path): Create a new cv2.VideoCapture object for a given video path.
"""
def __init__(self, path, vid_stride=1):
def __init__(self, path, batch=1, vid_stride=1):
"""Initialize the Dataloader and raise FileNotFoundError if file not found."""
parent = None
if isinstance(path, str) and Path(path).suffix == ".txt": # *.txt file with img/vid/dir on each line
@ -298,7 +301,7 @@ class LoadImages:
self.video_flag = [False] * ni + [True] * nv
self.mode = "image"
self.vid_stride = vid_stride # video frame-rate stride
self.bs = 1
self.bs = batch
if any(videos):
self._new_video(videos[0]) # new video
else:
@ -315,49 +318,68 @@ class LoadImages:
return self
def __next__(self):
"""Return next image, path and metadata from dataset."""
if self.count == self.nf:
raise StopIteration
path = self.files[self.count]
if self.video_flag[self.count]:
# Read video
self.mode = "video"
for _ in range(self.vid_stride):
self.cap.grab()
success, im0 = self.cap.retrieve()
while not success:
self.count += 1
self.cap.release()
if self.count == self.nf: # last video
"""Returns the next batch of images or video frames along with their paths and metadata."""
paths, imgs, is_video, info = [], [], [], []
while len(imgs) < self.bs:
if self.count >= self.nf: # end of file list
if len(imgs) > 0:
return paths, imgs, is_video, info # return last partial batch
else:
raise StopIteration
path = self.files[self.count]
self._new_video(path)
success, im0 = self.cap.read()
self.frame += 1
# im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False
s = f"video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: "
else:
# Read image
self.count += 1
im0 = cv2.imread(path) # BGR
if im0 is None:
raise FileNotFoundError(f"Image Not Found {path}")
s = f"image {self.count}/{self.nf} {path}: "
path = self.files[self.count]
if self.video_flag[self.count]:
self.mode = "video"
if not self.cap or not self.cap.isOpened():
self._new_video(path)
return [path], [im0], self.cap, s
for _ in range(self.vid_stride):
success = self.cap.grab()
if not success:
break # end of video or failure
if success:
success, im0 = self.cap.retrieve()
if success:
self.frame += 1
paths.append(path)
imgs.append(im0)
is_video.append(True)
info.append(f"video {self.count + 1}/{self.nf} (frame {self.frame}/{self.frames}) {path}: ")
if self.frame == self.frames: # end of video
self.count += 1
self.cap.release()
else:
# Move to the next file if the current video ended or failed to open
self.count += 1
if self.cap:
self.cap.release()
if self.count < self.nf:
self._new_video(self.files[self.count])
else:
self.mode = "image"
im0 = cv2.imread(path) # BGR
if im0 is None:
raise FileNotFoundError(f"Image Not Found {path}")
paths.append(path)
imgs.append(im0)
is_video.append(False) # no capture object for images
info.append(f"image {self.count + 1}/{self.nf} {path}: ")
self.count += 1 # move to the next file
return paths, imgs, is_video, info
def _new_video(self, path):
"""Create a new video capture object."""
"""Creates a new video capture object for the given path."""
self.frame = 0
self.cap = cv2.VideoCapture(path)
if not self.cap.isOpened():
raise FileNotFoundError(f"Failed to open video {path}")
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
def __len__(self):
"""Returns the number of files in the object."""
return self.nf # number of files
"""Returns the number of batches in the object."""
return math.ceil(self.nf / self.bs) # number of files
class LoadPilAndNumpy:
@ -373,7 +395,6 @@ class LoadPilAndNumpy:
im0 (list): List of images stored as Numpy arrays.
mode (str): Type of data being processed, defaults to 'image'.
bs (int): Batch size, equivalent to the length of `im0`.
count (int): Counter for iteration, initialized at 0 during `__iter__()`.
Methods:
_single_check(im): Validate and format a single image to a Numpy array.
@ -386,7 +407,6 @@ class LoadPilAndNumpy:
self.paths = [getattr(im, "filename", f"image{i}.jpg") for i, im in enumerate(im0)]
self.im0 = [self._single_check(im) for im in im0]
self.mode = "image"
# Generate fake paths
self.bs = len(self.im0)
@staticmethod
@ -409,7 +429,7 @@ class LoadPilAndNumpy:
if self.count == 1: # loop only once as it's batch inference
raise StopIteration
self.count += 1
return self.paths, self.im0, None, ""
return self.paths, self.im0, [False] * self.bs, [""] * self.bs
def __iter__(self):
"""Enables iteration for class LoadPilAndNumpy."""
@ -474,7 +494,7 @@ class LoadTensor:
if self.count == 1:
raise StopIteration
self.count += 1
return self.paths, self.im0, None, ""
return self.paths, self.im0, [False] * self.bs, [""] * self.bs
def __len__(self):
"""Returns the batch size."""
@ -498,9 +518,6 @@ def autocast_list(source):
return files
LOADERS = LoadStreams, LoadPilAndNumpy, LoadImages, LoadScreenshots # tuple
def get_best_youtube_url(url, use_pafy=True):
"""
Retrieves the URL of the best quality MP4 video stream from a given YouTube video.
@ -531,3 +548,7 @@ def get_best_youtube_url(url, use_pafy=True):
good_size = (f.get("width") or 0) >= 1920 or (f.get("height") or 0) >= 1080
if good_size and f["vcodec"] != "none" and f["acodec"] == "none" and f["ext"] == "mp4":
return f.get("url")
# Define constants
LOADERS = (LoadStreams, LoadPilAndNumpy, LoadImagesAndVideos, LoadScreenshots)

@ -423,7 +423,7 @@ class Model(nn.Module):
x in sys.argv for x in ("predict", "track", "mode=predict", "mode=track")
)
custom = {"conf": 0.25, "save": is_cli, "mode": "predict"} # method defaults
custom = {"conf": 0.25, "batch": 1, "save": is_cli, "mode": "predict"} # method defaults
args = {**self.overrides, **custom, **kwargs} # highest priority args on the right
prompts = args.pop("prompts", None) # for SAM-type models
@ -474,6 +474,7 @@ class Model(nn.Module):
register_tracker(self, persist)
kwargs["conf"] = kwargs.get("conf") or 0.1 # ByteTrack-based method needs low confidence predictions as input
kwargs["batch"] = kwargs.get("batch") or 1 # batch-size 1 for tracking in videos
kwargs["mode"] = "track"
return self.predict(source=source, stream=stream, **kwargs)

@ -73,9 +73,7 @@ class BasePredictor:
data (dict): Data configuration.
device (torch.device): Device used for prediction.
dataset (Dataset): Dataset used for prediction.
vid_path (str): Path to video file.
vid_writer (cv2.VideoWriter): Video writer for saving video output.
data_path (str): Path to data.
vid_writer (dict): Dictionary of {save_path: video_writer, ...} writer for saving video output.
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
@ -100,10 +98,11 @@ class BasePredictor:
self.imgsz = None
self.device = None
self.dataset = None
self.vid_path, self.vid_writer, self.vid_frame = None, None, None
self.vid_writer = {} # dict of {save_path: video_writer, ...}
self.plotted_img = None
self.data_path = None
self.source_type = None
self.seen = 0
self.windows = []
self.batch = None
self.results = None
self.transforms = None
@ -155,44 +154,6 @@ class BasePredictor:
letterbox = LetterBox(self.imgsz, auto=same_shapes and self.model.pt, stride=self.model.stride)
return [letterbox(image=x) for x in im]
def write_results(self, idx, results, batch):
"""Write inference results to a file or directory."""
p, im, _ = batch
log_string = ""
if len(im.shape) == 3:
im = im[None] # expand for batch dim
if self.source_type.webcam or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1
log_string += f"{idx}: "
frame = self.dataset.count
else:
frame = getattr(self.dataset, "frame", 0)
self.data_path = p
self.txt_path = str(self.save_dir / "labels" / p.stem) + ("" if self.dataset.mode == "image" else f"_{frame}")
log_string += "%gx%g " % im.shape[2:] # print string
result = results[idx]
log_string += result.verbose()
if self.args.save or self.args.show: # Add bbox to image
plot_args = {
"line_width": self.args.line_width,
"boxes": self.args.show_boxes,
"conf": self.args.show_conf,
"labels": self.args.show_labels,
}
if not self.args.retina_masks:
plot_args["im_gpu"] = im[idx]
self.plotted_img = result.plot(**plot_args)
# Write
if self.args.save_txt:
result.save_txt(f"{self.txt_path}.txt", save_conf=self.args.save_conf)
if self.args.save_crop:
result.save_crop(
save_dir=self.save_dir / "crops",
file_name=self.data_path.stem + ("" if self.dataset.mode == "image" else f"_{frame}"),
)
return log_string
def postprocess(self, preds, img, orig_imgs):
"""Post-processes predictions for an image and returns them."""
return preds
@ -228,18 +189,20 @@ class BasePredictor:
else None
)
self.dataset = load_inference_source(
source=source, vid_stride=self.args.vid_stride, buffer=self.args.stream_buffer
source=source,
batch=self.args.batch,
vid_stride=self.args.vid_stride,
buffer=self.args.stream_buffer,
)
self.source_type = self.dataset.source_type
if not getattr(self, "stream", True) and (
self.dataset.mode == "stream" # streams
or len(self.dataset) > 1000 # images
self.source_type.stream
or self.source_type.screenshot
or len(self.dataset) > 1000 # many images
or any(getattr(self.dataset, "video_flag", [False]))
): # videos
LOGGER.warning(STREAM_WARNING)
self.vid_path = [None] * self.dataset.bs
self.vid_writer = [None] * self.dataset.bs
self.vid_frame = [None] * self.dataset.bs
self.vid_writer = {}
@smart_inference_mode()
def stream_inference(self, source=None, model=None, *args, **kwargs):
@ -271,10 +234,9 @@ class BasePredictor:
ops.Profile(device=self.device),
)
self.run_callbacks("on_predict_start")
for batch in self.dataset:
for self.batch in self.dataset:
self.run_callbacks("on_predict_batch_start")
self.batch = batch
path, im0s, vid_cap, s = batch
paths, im0s, is_video, s = self.batch
# Preprocess
with profilers[0]:
@ -290,8 +252,8 @@ class BasePredictor:
# Postprocess
with profilers[2]:
self.results = self.postprocess(preds, im, im0s)
self.run_callbacks("on_predict_postprocess_end")
# Visualize, save, write results
n = len(im0s)
for i in range(n):
@ -301,41 +263,32 @@ class BasePredictor:
"inference": profilers[1].dt * 1e3 / n,
"postprocess": profilers[2].dt * 1e3 / n,
}
p, im0 = path[i], None if self.source_type.tensor else im0s[i].copy()
p = Path(p)
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
s += self.write_results(i, self.results, (p, im, im0))
if self.args.save or self.args.save_txt:
self.results[i].save_dir = self.save_dir.__str__()
if self.args.show and self.plotted_img is not None:
self.show(p)
if self.args.save and self.plotted_img is not None:
self.save_preds(vid_cap, i, str(self.save_dir / p.name))
s[i] += self.write_results(i, Path(paths[i]), im, is_video)
# Print batch results
if self.args.verbose:
LOGGER.info("\n".join(s))
self.run_callbacks("on_predict_batch_end")
yield from self.results
# Print time (inference-only)
if self.args.verbose:
LOGGER.info(f"{s}{profilers[1].dt * 1E3:.1f}ms")
# Release assets
if isinstance(self.vid_writer[-1], cv2.VideoWriter):
self.vid_writer[-1].release() # release final video writer
for v in self.vid_writer.values():
if isinstance(v, cv2.VideoWriter):
v.release()
# Print results
# Print final results
if self.args.verbose and self.seen:
t = tuple(x.t / self.seen * 1e3 for x in profilers) # speeds per image
LOGGER.info(
f"Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape "
f"{(1, 3, *im.shape[2:])}" % t
f"{(min(self.args.batch, self.seen), 3, *im.shape[2:])}" % t
)
if self.args.save or self.args.save_txt or self.args.save_crop:
nl = len(list(self.save_dir.glob("labels/*.txt"))) # number of labels
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ""
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
self.run_callbacks("on_predict_end")
def setup_model(self, model, verbose=True):
@ -354,48 +307,81 @@ class BasePredictor:
self.args.half = self.model.fp16 # update half
self.model.eval()
def show(self, p):
"""Display an image in a window using OpenCV imshow()."""
im0 = self.plotted_img
if platform.system() == "Linux" and p not in self.windows:
self.windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(500 if self.batch[3].startswith("image") else 1) # 1 millisecond
def write_results(self, i, p, im, is_video):
"""Write inference results to a file or directory."""
string = "" # print string
if len(im.shape) == 3:
im = im[None] # expand for batch dim
if self.source_type.stream or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1
string += f"{i}: "
frame = self.dataset.count
else:
frame = getattr(self.dataset, "frame", 0) - len(self.results) + i
self.txt_path = self.save_dir / "labels" / (p.stem + f"_{frame}" if is_video[i] else "")
string += "%gx%g " % im.shape[2:]
result = self.results[i]
result.save_dir = self.save_dir.__str__() # used in other locations
string += result.verbose() + f"{result.speed['inference']:.1f}ms"
# Add predictions to image
if self.args.save or self.args.show:
self.plotted_img = result.plot(
line_width=self.args.line_width,
boxes=self.args.show_boxes,
conf=self.args.show_conf,
labels=self.args.show_labels,
im_gpu=None if self.args.retina_masks else im[i],
)
# Save results
if self.args.save_txt:
result.save_txt(f"{self.txt_path}.txt", save_conf=self.args.save_conf)
if self.args.save_crop:
result.save_crop(save_dir=self.save_dir / "crops", file_name=self.txt_path.stem)
if self.args.show:
self.show(str(p), is_video[i])
if self.args.save:
self.save_predicted_images(str(self.save_dir / p.name), is_video[i], frame)
return string
def save_preds(self, vid_cap, idx, save_path):
def save_predicted_images(self, save_path="", is_video=False, frame=0):
"""Save video predictions as mp4 at specified path."""
im0 = self.plotted_img
# Save imgs
if self.dataset.mode == "image":
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
im = self.plotted_img
# Save videos and streams
if is_video:
frames_path = f'{save_path.split(".", 1)[0]}_frames/'
if self.vid_path[idx] != save_path: # new video
self.vid_path[idx] = save_path
if save_path not in self.vid_writer: # new video
if self.args.save_frames:
Path(frames_path).mkdir(parents=True, exist_ok=True)
self.vid_frame[idx] = 0
if isinstance(self.vid_writer[idx], cv2.VideoWriter):
self.vid_writer[idx].release() # release previous video writer
if vid_cap: # video
fps = int(vid_cap.get(cv2.CAP_PROP_FPS)) # integer required, floats produce error in MP4 codec
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
suffix, fourcc = (".mp4", "avc1") if MACOS else (".avi", "WMV2") if WINDOWS else (".avi", "MJPG")
self.vid_writer[idx] = cv2.VideoWriter(
str(Path(save_path).with_suffix(suffix)), cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)
self.vid_writer[save_path] = cv2.VideoWriter(
filename=str(Path(save_path).with_suffix(suffix)),
fourcc=cv2.VideoWriter_fourcc(*fourcc),
fps=30, # integer required, floats produce error in MP4 codec
frameSize=(im.shape[1], im.shape[0]), # (width, height)
)
# Write video
self.vid_writer[idx].write(im0)
# Write frame
# Save video
self.vid_writer[save_path].write(im)
if self.args.save_frames:
cv2.imwrite(f"{frames_path}{self.vid_frame[idx]}.jpg", im0)
self.vid_frame[idx] += 1
cv2.imwrite(f"{frames_path}{frame}.jpg", im)
# Save images
else:
cv2.imwrite(save_path, im)
def show(self, p="", is_video=False):
"""Display an image in a window using OpenCV imshow()."""
im = self.plotted_img
if platform.system() == "Linux" and p not in self.windows:
self.windows.append(p)
cv2.namedWindow(p, cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(p, im.shape[1], im.shape[0]) # (width, height)
cv2.imshow(p, im)
cv2.waitKey(1 if is_video else 500) # 1 millisecond
def run_callbacks(self, event: str):
"""Runs all registered callbacks for a specific event."""

@ -39,6 +39,7 @@ def on_predict_start(predictor: object, persist: bool = False) -> None:
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
trackers.append(tracker)
predictor.trackers = trackers
predictor.vid_path = [None] * predictor.dataset.bs # for determining when to reset tracker on new video
def on_predict_postprocess_end(predictor: object, persist: bool = False) -> None:
@ -54,8 +55,10 @@ def on_predict_postprocess_end(predictor: object, persist: bool = False) -> None
is_obb = predictor.args.task == "obb"
for i in range(bs):
if not persist and predictor.vid_path[i] != str(predictor.save_dir / Path(path[i]).name): # new video
vid_path = predictor.save_dir / Path(path[i]).name
if not persist and predictor.vid_path[i] != vid_path: # new video
predictor.trackers[i].reset()
predictor.vid_path[i] = vid_path
det = (predictor.results[i].obb if is_obb else predictor.results[i].boxes).cpu().numpy()
if len(det) == 0:

Loading…
Cancel
Save