Update `workouts_monitoring` solution (#16706)

Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/16712/head
Muhammad Rizwan Munawar 2 months ago committed by GitHub
parent c17ddcdf70
commit 73e6861d95
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 4
      docs/en/guides/object-counting.md
  2. 87
      docs/en/guides/workouts-monitoring.md
  3. 6
      tests/test_solutions.py
  4. 4
      ultralytics/cfg/solutions/default.yaml
  5. 158
      ultralytics/solutions/ai_gym.py
  6. 12
      ultralytics/solutions/solutions.py
  7. 120
      ultralytics/utils/plotting.py

@ -286,7 +286,7 @@ def count_objects_in_region(video_path, output_video_path, model_path):
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
im0 = counter.start_counting(im0)
im0 = counter.count(im0)
video_writer.write(im0)
cap.release()
@ -334,7 +334,7 @@ def count_specific_classes(video_path, output_video_path, model_path, classes_to
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
im0 = counter.start_counting(im0)
im0 = counter.count(im0)
video_writer.write(im0)
cap.release()

@ -41,18 +41,16 @@ Monitoring workouts through pose estimation with [Ultralytics YOLO11](https://gi
```python
import cv2
from ultralytics import YOLO, solutions
from ultralytics import solutions
model = YOLO("yolo11n-pose.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
gym_object = solutions.AIGym(
line_thickness=2,
view_img=True,
pose_type="pushup",
kpts_to_check=[6, 8, 10],
gym = solutions.AIGym(
model="yolo11n-pose.pt",
show=True,
kpts=[6, 8, 10],
)
while cap.isOpened():
@ -60,9 +58,7 @@ Monitoring workouts through pose estimation with [Ultralytics YOLO11](https://gi
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
results = model.track(im0, verbose=False) # Tracking recommended
# results = model.predict(im0) # Prediction also supported
im0 = gym_object.start_counting(im0, results)
im0 = gym.monitor(im0)
cv2.destroyAllWindows()
```
@ -72,20 +68,17 @@ Monitoring workouts through pose estimation with [Ultralytics YOLO11](https://gi
```python
import cv2
from ultralytics import YOLO, solutions
from ultralytics import solutions
model = YOLO("yolo11n-pose.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter("workouts.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
gym_object = solutions.AIGym(
line_thickness=2,
view_img=True,
pose_type="pushup",
kpts_to_check=[6, 8, 10],
gym = solutions.AIGym(
show=True,
kpts=[6, 8, 10],
)
while cap.isOpened():
@ -93,19 +86,13 @@ Monitoring workouts through pose estimation with [Ultralytics YOLO11](https://gi
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
results = model.track(im0, verbose=False) # Tracking recommended
# results = model.predict(im0) # Prediction also supported
im0 = gym_object.start_counting(im0, results)
im0 = gym.monitor(im0)
video_writer.write(im0)
cv2.destroyAllWindows()
video_writer.release()
```
???+ tip "Support"
"pushup", "pullup" and "abworkout" supported
### KeyPoints Map
![keyPoints Order Ultralytics YOLO11 Pose](https://github.com/ultralytics/docs/releases/download/0/keypoints-order-ultralytics-yolov8-pose.avif)
@ -113,13 +100,12 @@ Monitoring workouts through pose estimation with [Ultralytics YOLO11](https://gi
### Arguments `AIGym`
| Name | Type | Default | Description |
| ----------------- | ------- | -------- | -------------------------------------------------------------------------------------- |
| `kpts_to_check` | `list` | `None` | List of three keypoints index, for counting specific workout, followed by keypoint Map |
| `line_thickness` | `int` | `2` | Thickness of the lines drawn. |
| `view_img` | `bool` | `False` | Flag to display the image. |
| `pose_up_angle` | `float` | `145.0` | Angle threshold for the 'up' pose. |
| `pose_down_angle` | `float` | `90.0` | Angle threshold for the 'down' pose. |
| `pose_type` | `str` | `pullup` | Type of pose to detect (`'pullup`', `pushup`, `abworkout`, `squat`). |
| ------------ | ------- | ------- | -------------------------------------------------------------------------------------- |
| `kpts` | `list` | `None` | List of three keypoints index, for counting specific workout, followed by keypoint Map |
| `line_width` | `int` | `2` | Thickness of the lines drawn. |
| `show` | `bool` | `False` | Flag to display the image. |
| `up_angle` | `float` | `145.0` | Angle threshold for the 'up' pose. |
| `down_angle` | `float` | `90.0` | Angle threshold for the 'down' pose. |
### Arguments `model.predict`
@ -138,18 +124,16 @@ To monitor your workouts using Ultralytics YOLO11, you can utilize the pose esti
```python
import cv2
from ultralytics import YOLO, solutions
from ultralytics import solutions
model = YOLO("yolo11n-pose.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
gym_object = solutions.AIGym(
line_thickness=2,
view_img=True,
pose_type="pushup",
kpts_to_check=[6, 8, 10],
gym = solutions.AIGym(
line_width=2,
show=True,
kpts=[6, 8, 10],
)
while cap.isOpened():
@ -157,8 +141,7 @@ while cap.isOpened():
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
results = model.track(im0, verbose=False)
im0 = gym_object.start_counting(im0, results)
im0 = gym.monitor(im0)
cv2.destroyAllWindows()
```
@ -188,11 +171,10 @@ Yes, Ultralytics YOLO11 can be adapted for custom workout routines. The `AIGym`
```python
from ultralytics import solutions
gym_object = solutions.AIGym(
line_thickness=2,
view_img=True,
pose_type="squat",
kpts_to_check=[6, 8, 10],
gym = solutions.AIGym(
line_width=2,
show=True,
kpts=[6, 8, 10],
)
```
@ -205,20 +187,18 @@ To save the workout monitoring output, you can modify the code to include a vide
```python
import cv2
from ultralytics import YOLO, solutions
from ultralytics import solutions
model = YOLO("yolo11n-pose.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter("workouts.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
gym_object = solutions.AIGym(
line_thickness=2,
view_img=True,
pose_type="pushup",
kpts_to_check=[6, 8, 10],
gym = solutions.AIGym(
line_width=2,
show=True,
kpts=[6, 8, 10],
)
while cap.isOpened():
@ -226,8 +206,7 @@ while cap.isOpened():
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
results = model.track(im0, verbose=False)
im0 = gym_object.start_counting(im0, results)
im0 = gym.monitor(im0)
video_writer.write(im0)
cv2.destroyAllWindows()

@ -41,16 +41,14 @@ def test_major_solutions():
def test_aigym():
"""Test the workouts monitoring solution."""
safe_download(url=WORKOUTS_SOLUTION_DEMO)
model = YOLO("yolo11n-pose.pt")
cap = cv2.VideoCapture("solution_ci_pose_demo.mp4")
assert cap.isOpened(), "Error reading video file"
gym_object = solutions.AIGym(line_thickness=2, pose_type="squat", kpts_to_check=[5, 11, 13])
gym = solutions.AIGym(line_width=2, kpts=[5, 11, 13])
while cap.isOpened():
success, im0 = cap.read()
if not success:
break
results = model.track(im0, verbose=False)
_ = gym_object.start_counting(im0, results)
_ = gym.monitor(im0)
cap.release()
cv2.destroyAllWindows()

@ -10,3 +10,7 @@ show: True # Flag to control whether to display output image or not
show_in: True # Flag to display objects moving *into* the defined region
show_out: True # Flag to display objects moving *out of* the defined region
classes: # To count specific classes
up_angle: 145.0 # workouts up_angle for counts, 145.0 is default value
down_angle: 90 # workouts down_angle for counts, 90 is default value
kpts: [6, 8, 10] # keypoints for workouts monitoring

@ -1,127 +1,79 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import cv2
from ultralytics.utils.checks import check_imshow
from ultralytics.solutions.solutions import BaseSolution # Import a parent class
from ultralytics.utils.plotting import Annotator
class AIGym:
class AIGym(BaseSolution):
"""A class to manage the gym steps of people in a real-time video stream based on their poses."""
def __init__(
self,
kpts_to_check,
line_thickness=2,
view_img=False,
pose_up_angle=145.0,
pose_down_angle=90.0,
pose_type="pullup",
):
"""
Initializes the AIGym class with the specified parameters.
Args:
kpts_to_check (list): Indices of keypoints to check.
line_thickness (int, optional): Thickness of the lines drawn. Defaults to 2.
view_img (bool, optional): Flag to display the image. Defaults to False.
pose_up_angle (float, optional): Angle threshold for the 'up' pose. Defaults to 145.0.
pose_down_angle (float, optional): Angle threshold for the 'down' pose. Defaults to 90.0.
pose_type (str, optional): Type of pose to detect ('pullup', 'pushup', 'abworkout'). Defaults to "pullup".
def __init__(self, **kwargs):
"""Initialization function for AiGYM class, a child class of BaseSolution class, can be used for workouts
monitoring.
"""
# Image and line thickness
self.im0 = None
self.tf = line_thickness
# Keypoints and count information
self.keypoints = None
self.poseup_angle = pose_up_angle
self.posedown_angle = pose_down_angle
self.threshold = 0.001
# Store stage, count and angle information
self.angle = None
self.count = None
self.stage = None
self.pose_type = pose_type
self.kpts_to_check = kpts_to_check
# Visual Information
self.view_img = view_img
self.annotator = None
# Check if environment supports imshow
self.env_check = check_imshow(warn=True)
self.count = []
self.angle = []
self.stage = []
def start_counting(self, im0, results):
# Check if the model name ends with '-pose'
if "model" in kwargs and "-pose" not in kwargs["model"]:
kwargs["model"] = "yolo11n-pose.pt"
elif "model" not in kwargs:
kwargs["model"] = "yolo11n-pose.pt"
super().__init__(**kwargs)
self.count = [] # List for counts, necessary where there are multiple objects in frame
self.angle = [] # List for angle, necessary where there are multiple objects in frame
self.stage = [] # List for stage, necessary where there are multiple objects in frame
# Extract details from CFG single time for usage later
self.initial_stage = None
self.up_angle = float(self.CFG["up_angle"]) # Pose up predefined angle to consider up pose
self.down_angle = float(self.CFG["down_angle"]) # Pose down predefined angle to consider down pose
self.kpts = self.CFG["kpts"] # User selected kpts of workouts storage for further usage
self.lw = self.CFG["line_width"] # Store line_width for usage
def monitor(self, im0):
"""
Function used to count the gym steps.
Monitor the workouts using Ultralytics YOLOv8 Pose Model: https://docs.ultralytics.com/tasks/pose/.
Args:
im0 (ndarray): Current frame from the video stream.
results (list): Pose estimation data.
im0 (ndarray): The input image that will be used for processing
Returns
im0 (ndarray): The processed image for more usage
"""
self.im0 = im0
# Extract tracks
tracks = self.model.track(source=im0, persist=True, classes=self.CFG["classes"])[0]
if not len(results[0]):
return self.im0
if len(results[0]) > len(self.count):
new_human = len(results[0]) - len(self.count)
self.count += [0] * new_human
if tracks.boxes.id is not None:
# Extract and check keypoints
if len(tracks) > len(self.count):
new_human = len(tracks) - len(self.count)
self.angle += [0] * new_human
self.count += [0] * new_human
self.stage += ["-"] * new_human
self.keypoints = results[0].keypoints.data
self.annotator = Annotator(im0, line_width=self.tf)
# Initialize annotator
self.annotator = Annotator(im0, line_width=self.lw)
for ind, k in enumerate(reversed(self.keypoints)):
# Estimate angle and draw specific points based on pose type
if self.pose_type in {"pushup", "pullup", "abworkout", "squat"}:
self.angle[ind] = self.annotator.estimate_pose_angle(
k[int(self.kpts_to_check[0])].cpu(),
k[int(self.kpts_to_check[1])].cpu(),
k[int(self.kpts_to_check[2])].cpu(),
)
self.im0 = self.annotator.draw_specific_points(k, self.kpts_to_check, shape=(640, 640), radius=10)
# Enumerate over keypoints
for ind, k in enumerate(reversed(tracks.keypoints.data)):
# Get keypoints and estimate the angle
kpts = [k[int(self.kpts[i])].cpu() for i in range(3)]
self.angle[ind] = self.annotator.estimate_pose_angle(*kpts)
im0 = self.annotator.draw_specific_points(k, self.kpts, radius=self.lw * 3)
# Check and update pose stages and counts based on angle
if self.pose_type in {"abworkout", "pullup"}:
if self.angle[ind] > self.poseup_angle:
self.stage[ind] = "down"
if self.angle[ind] < self.posedown_angle and self.stage[ind] == "down":
self.stage[ind] = "up"
# Determine stage and count logic based on angle thresholds
if self.angle[ind] < self.down_angle:
if self.stage[ind] == "up":
self.count[ind] += 1
elif self.pose_type in {"pushup", "squat"}:
if self.angle[ind] > self.poseup_angle:
self.stage[ind] = "up"
if self.angle[ind] < self.posedown_angle and self.stage[ind] == "up":
self.stage[ind] = "down"
self.count[ind] += 1
elif self.angle[ind] > self.up_angle:
self.stage[ind] = "up"
# Display angle, count, and stage text
self.annotator.plot_angle_and_count_and_stage(
angle_text=self.angle[ind],
count_text=self.count[ind],
stage_text=self.stage[ind],
center_kpt=k[int(self.kpts_to_check[1])],
angle_text=self.angle[ind], # angle text for display
count_text=self.count[ind], # count text for workouts
stage_text=self.stage[ind], # stage position text
center_kpt=k[int(self.kpts[1])], # center keypoint for display
)
# Draw keypoints
self.annotator.kpts(k, shape=(640, 640), radius=1, kpt_line=True)
# Display the image if environment supports it and view_img is True
if self.env_check and self.view_img:
cv2.imshow("Ultralytics YOLOv8 AI GYM", self.im0)
if cv2.waitKey(1) & 0xFF == ord("q"):
return
return self.im0
if __name__ == "__main__":
kpts_to_check = [0, 1, 2] # example keypoints
aigym = AIGym(kpts_to_check)
self.display_output(im0) # Display output image, if environment support display
return im0 # return an image for writing or further usage

@ -4,11 +4,13 @@ from collections import defaultdict
from pathlib import Path
import cv2
from shapely.geometry import LineString, Polygon
from ultralytics import YOLO
from ultralytics.utils import yaml_load
from ultralytics.utils.checks import check_imshow
from ultralytics.utils import LOGGER, yaml_load
from ultralytics.utils.checks import check_imshow, check_requirements
check_requirements("shapely>=2.0.0")
from shapely.geometry import LineString, Polygon
DEFAULT_SOL_CFG_PATH = Path(__file__).resolve().parents[1] / "cfg/solutions/default.yaml"
@ -25,7 +27,7 @@ class BaseSolution:
# Load config and update with args
self.CFG = yaml_load(DEFAULT_SOL_CFG_PATH)
self.CFG.update(kwargs)
print("Ultralytics Solutions: ✅", self.CFG)
LOGGER.info(f"Ultralytics Solutions: ✅ {self.CFG}")
self.region = self.CFG["region"] # Store region data for other classes usage
self.line_width = self.CFG["line_width"] # Store line_width for usage
@ -54,6 +56,8 @@ class BaseSolution:
self.boxes = self.track_data.xyxy.cpu()
self.clss = self.track_data.cls.cpu().tolist()
self.track_ids = self.track_data.id.int().cpu().tolist()
else:
LOGGER.warning("WARNING ⚠ tracks none, no keypoints will be considered.")
def store_tracking_history(self, track_id, box):
"""

@ -697,14 +697,13 @@ class Annotator:
angle = 360 - angle
return angle
def draw_specific_points(self, keypoints, indices=None, shape=(640, 640), radius=2, conf_thres=0.25):
def draw_specific_points(self, keypoints, indices=None, radius=2, conf_thres=0.25):
"""
Draw specific keypoints for gym steps counting.
Args:
keypoints (list): Keypoints data to be plotted.
indices (list, optional): Keypoint indices to be plotted. Defaults to [2, 5, 7].
shape (tuple, optional): Image size for model inference. Defaults to (640, 640).
radius (int, optional): Keypoint radius. Defaults to 2.
conf_thres (float, optional): Confidence threshold for keypoints. Defaults to 0.25.
@ -715,90 +714,71 @@ class Annotator:
Keypoint format: [x, y] or [x, y, confidence].
Modifies self.im in-place.
"""
if indices is None:
indices = [2, 5, 7]
for i, k in enumerate(keypoints):
if i in indices:
x_coord, y_coord = k[0], k[1]
if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
if len(k) == 3:
conf = k[2]
if conf < conf_thres:
continue
cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, (0, 255, 0), -1, lineType=cv2.LINE_AA)
indices = indices or [2, 5, 7]
points = [(int(k[0]), int(k[1])) for i, k in enumerate(keypoints) if i in indices and k[2] >= conf_thres]
# Draw lines between consecutive points
for start, end in zip(points[:-1], points[1:]):
cv2.line(self.im, start, end, (0, 255, 0), 2, lineType=cv2.LINE_AA)
# Draw circles for keypoints
for pt in points:
cv2.circle(self.im, pt, radius, (0, 0, 255), -1, lineType=cv2.LINE_AA)
return self.im
def plot_angle_and_count_and_stage(
self, angle_text, count_text, stage_text, center_kpt, color=(104, 31, 17), txt_color=(255, 255, 255)
):
def plot_workout_information(self, display_text, position, color=(104, 31, 17), txt_color=(255, 255, 255)):
"""
Plot the pose angle, count value and step stage.
Draw text with a background on the image.
Args:
angle_text (str): angle value for workout monitoring
count_text (str): counts value for workout monitoring
stage_text (str): stage decision for workout monitoring
center_kpt (list): centroid pose index for workout monitoring
color (tuple): text background color for workout monitoring
txt_color (tuple): text foreground color for workout monitoring
display_text (str): The text to be displayed.
position (tuple): Coordinates (x, y) on the image where the text will be placed.
color (tuple, optional): Text background color
txt_color (tuple, optional): Text foreground color
"""
angle_text, count_text, stage_text = (f" {angle_text:.2f}", f"Steps : {count_text}", f" {stage_text}")
(text_width, text_height), _ = cv2.getTextSize(display_text, 0, self.sf, self.tf)
# Draw angle
(angle_text_width, angle_text_height), _ = cv2.getTextSize(angle_text, 0, self.sf, self.tf)
angle_text_position = (int(center_kpt[0]), int(center_kpt[1]))
angle_background_position = (angle_text_position[0], angle_text_position[1] - angle_text_height - 5)
angle_background_size = (angle_text_width + 2 * 5, angle_text_height + 2 * 5 + (self.tf * 2))
# Draw background rectangle
cv2.rectangle(
self.im,
angle_background_position,
(
angle_background_position[0] + angle_background_size[0],
angle_background_position[1] + angle_background_size[1],
),
(position[0], position[1] - text_height - 5),
(position[0] + text_width + 10, position[1] - text_height - 5 + text_height + 10 + self.tf),
color,
-1,
)
cv2.putText(self.im, angle_text, angle_text_position, 0, self.sf, txt_color, self.tf)
# Draw Counts
(count_text_width, count_text_height), _ = cv2.getTextSize(count_text, 0, self.sf, self.tf)
count_text_position = (angle_text_position[0], angle_text_position[1] + angle_text_height + 20)
count_background_position = (
angle_background_position[0],
angle_background_position[1] + angle_background_size[1] + 5,
)
count_background_size = (count_text_width + 10, count_text_height + 10 + self.tf)
# Draw text
cv2.putText(self.im, display_text, position, 0, self.sf, txt_color, self.tf)
cv2.rectangle(
self.im,
count_background_position,
(
count_background_position[0] + count_background_size[0],
count_background_position[1] + count_background_size[1],
),
color,
-1,
)
cv2.putText(self.im, count_text, count_text_position, 0, self.sf, txt_color, self.tf)
return text_height
# Draw Stage
(stage_text_width, stage_text_height), _ = cv2.getTextSize(stage_text, 0, self.sf, self.tf)
stage_text_position = (int(center_kpt[0]), int(center_kpt[1]) + angle_text_height + count_text_height + 40)
stage_background_position = (stage_text_position[0], stage_text_position[1] - stage_text_height - 5)
stage_background_size = (stage_text_width + 10, stage_text_height + 10)
def plot_angle_and_count_and_stage(
self, angle_text, count_text, stage_text, center_kpt, color=(104, 31, 17), txt_color=(255, 255, 255)
):
"""
Plot the pose angle, count value, and step stage.
cv2.rectangle(
self.im,
stage_background_position,
(
stage_background_position[0] + stage_background_size[0],
stage_background_position[1] + stage_background_size[1],
),
color,
-1,
Args:
angle_text (str): Angle value for workout monitoring
count_text (str): Counts value for workout monitoring
stage_text (str): Stage decision for workout monitoring
center_kpt (list): Centroid pose index for workout monitoring
color (tuple, optional): Text background color
txt_color (tuple, optional): Text foreground color
"""
# Format text
angle_text, count_text, stage_text = f" {angle_text:.2f}", f"Steps : {count_text}", f" {stage_text}"
# Draw angle, count and stage text
angle_height = self.plot_workout_information(
angle_text, (int(center_kpt[0]), int(center_kpt[1])), color, txt_color
)
count_height = self.plot_workout_information(
count_text, (int(center_kpt[0]), int(center_kpt[1]) + angle_height + 20), color, txt_color
)
self.plot_workout_information(
stage_text, (int(center_kpt[0]), int(center_kpt[1]) + angle_height + count_height + 40), color, txt_color
)
cv2.putText(self.im, stage_text, stage_text_position, 0, self.sf, txt_color, self.tf)
def seg_bbox(self, mask, mask_color=(255, 0, 255), label=None, txt_color=(255, 255, 255)):
"""

Loading…
Cancel
Save