Introduced `BaseSolution` class for Ultralytics solutions (#16671)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>pull/16690/head
parent
e5d3427a52
commit
70ba988c68
6 changed files with 275 additions and 303 deletions
@ -0,0 +1,12 @@ |
|||||||
|
# Ultralytics YOLO 🚀, AGPL-3.0 license |
||||||
|
|
||||||
|
# Configuration for Ultralytics Solutions |
||||||
|
|
||||||
|
model: "yolo11n.pt" # The Ultralytics YOLO11 model to be used (e.g., yolo11n.pt for YOLO11 nano version) |
||||||
|
|
||||||
|
region: # Object counting, queue or speed estimation region points |
||||||
|
line_width: 2 # Thickness of the lines used to draw regions on the image/video frames |
||||||
|
show: True # Flag to control whether to display output image or not |
||||||
|
show_in: True # Flag to display objects moving *into* the defined region |
||||||
|
show_out: True # Flag to display objects moving *out of* the defined region |
||||||
|
classes: # To count specific classes |
@ -1,243 +1,129 @@ |
|||||||
# Ultralytics YOLO 🚀, AGPL-3.0 license |
# Ultralytics YOLO 🚀, AGPL-3.0 license |
||||||
|
|
||||||
from collections import defaultdict |
from shapely.geometry import LineString, Point |
||||||
|
|
||||||
import cv2 |
from ultralytics.solutions.solutions import BaseSolution # Import a parent class |
||||||
|
|
||||||
from ultralytics.utils.checks import check_imshow, check_requirements |
|
||||||
from ultralytics.utils.plotting import Annotator, colors |
from ultralytics.utils.plotting import Annotator, colors |
||||||
|
|
||||||
check_requirements("shapely>=2.0.0") |
|
||||||
|
|
||||||
from shapely.geometry import LineString, Point, Polygon |
class ObjectCounter(BaseSolution): |
||||||
|
"""A class to manage the counting of objects in a real-time video stream based on their tracks.""" |
||||||
|
|
||||||
|
def __init__(self, **kwargs): |
||||||
|
"""Initialization function for Count class, a child class of BaseSolution class, can be used for counting the |
||||||
|
objects. |
||||||
|
""" |
||||||
|
super().__init__(**kwargs) |
||||||
|
|
||||||
class ObjectCounter: |
self.in_count = 0 # Counter for objects moving inward |
||||||
"""A class to manage the counting of objects in a real-time video stream based on their tracks.""" |
self.out_count = 0 # Counter for objects moving outward |
||||||
|
self.counted_ids = [] # List of IDs of objects that have been counted |
||||||
|
self.classwise_counts = {} # Dictionary for counts, categorized by object class |
||||||
|
|
||||||
def __init__( |
self.initialize_region() # Setup region and counting areas |
||||||
self, |
|
||||||
names, |
self.show_in = self.CFG["show_in"] |
||||||
reg_pts=None, |
self.show_out = self.CFG["show_out"] |
||||||
line_thickness=2, |
|
||||||
view_img=False, |
def count_objects(self, track_line, box, track_id, prev_position, cls): |
||||||
view_in_counts=True, |
|
||||||
view_out_counts=True, |
|
||||||
draw_tracks=False, |
|
||||||
): |
|
||||||
""" |
""" |
||||||
Initializes the ObjectCounter with various tracking and counting parameters. |
Helper function to count objects within a polygonal region. |
||||||
|
|
||||||
Args: |
Args: |
||||||
names (dict): Dictionary of class names. |
track_line (dict): last 30 frame track record |
||||||
reg_pts (list): List of points defining the counting region. |
box (list): Bounding box data for specific track in current frame |
||||||
line_thickness (int): Line thickness for bounding boxes. |
track_id (int): track ID of the object |
||||||
view_img (bool): Flag to control whether to display the video stream. |
prev_position (tuple): last frame position coordinates of the track |
||||||
view_in_counts (bool): Flag to control whether to display the in counts on the video stream. |
cls (int): Class index for classwise count updates |
||||||
view_out_counts (bool): Flag to control whether to display the out counts on the video stream. |
|
||||||
draw_tracks (bool): Flag to control whether to draw the object tracks. |
|
||||||
""" |
""" |
||||||
# Mouse events |
if prev_position is None or track_id in self.counted_ids: |
||||||
self.is_drawing = False |
return |
||||||
self.selected_point = None |
|
||||||
|
centroid = self.r_s.centroid |
||||||
# Region & Line Information |
dx = (box[0] - prev_position[0]) * (centroid.x - prev_position[0]) |
||||||
self.reg_pts = [(20, 400), (1260, 400)] if reg_pts is None else reg_pts |
dy = (box[1] - prev_position[1]) * (centroid.y - prev_position[1]) |
||||||
self.counting_region = None |
|
||||||
|
if len(self.region) >= 3 and self.r_s.contains(Point(track_line[-1])): |
||||||
# Image and annotation Information |
self.counted_ids.append(track_id) |
||||||
self.im0 = None |
# For polygon region |
||||||
self.tf = line_thickness |
if dx > 0: |
||||||
self.view_img = view_img |
self.in_count += 1 |
||||||
self.view_in_counts = view_in_counts |
self.classwise_counts[self.names[cls]]["IN"] += 1 |
||||||
self.view_out_counts = view_out_counts |
else: |
||||||
|
self.out_count += 1 |
||||||
self.names = names # Classes names |
self.classwise_counts[self.names[cls]]["OUT"] += 1 |
||||||
self.window_name = "Ultralytics YOLOv8 Object Counter" |
|
||||||
|
elif len(self.region) < 3 and LineString([prev_position, box[:2]]).intersects(self.l_s): |
||||||
# Object counting Information |
self.counted_ids.append(track_id) |
||||||
self.in_counts = 0 |
# For linear region |
||||||
self.out_counts = 0 |
if dx > 0 and dy > 0: |
||||||
self.count_ids = [] |
self.in_count += 1 |
||||||
self.class_wise_count = {} |
self.classwise_counts[self.names[cls]]["IN"] += 1 |
||||||
|
else: |
||||||
# Tracks info |
self.out_count += 1 |
||||||
self.track_history = defaultdict(list) |
self.classwise_counts[self.names[cls]]["OUT"] += 1 |
||||||
self.draw_tracks = draw_tracks |
|
||||||
|
def store_classwise_counts(self, cls): |
||||||
# Check if environment supports imshow |
|
||||||
self.env_check = check_imshow(warn=True) |
|
||||||
|
|
||||||
# Initialize counting region |
|
||||||
if len(self.reg_pts) == 2: |
|
||||||
print("Line Counter Initiated.") |
|
||||||
self.counting_region = LineString(self.reg_pts) |
|
||||||
elif len(self.reg_pts) >= 3: |
|
||||||
print("Polygon Counter Initiated.") |
|
||||||
self.counting_region = Polygon(self.reg_pts) |
|
||||||
else: |
|
||||||
print("Invalid Region points provided, region_points must be 2 for lines or >= 3 for polygons.") |
|
||||||
print("Using Line Counter Now") |
|
||||||
self.counting_region = LineString(self.reg_pts) |
|
||||||
|
|
||||||
# Define the counting line segment |
|
||||||
self.counting_line_segment = LineString( |
|
||||||
[ |
|
||||||
(self.reg_pts[0][0], self.reg_pts[0][1]), |
|
||||||
(self.reg_pts[1][0], self.reg_pts[1][1]), |
|
||||||
] |
|
||||||
) |
|
||||||
|
|
||||||
def mouse_event_for_region(self, event, x, y, flags, params): |
|
||||||
""" |
""" |
||||||
Handles mouse events for defining and moving the counting region in a real-time video stream. |
Initialize class-wise counts if not already present. |
||||||
|
|
||||||
Args: |
Args: |
||||||
event (int): The type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.). |
cls (int): Class index for classwise count updates |
||||||
x (int): The x-coordinate of the mouse pointer. |
|
||||||
y (int): The y-coordinate of the mouse pointer. |
|
||||||
flags (int): Any associated event flags (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY, etc.). |
|
||||||
params (dict): Additional parameters for the function. |
|
||||||
""" |
""" |
||||||
if event == cv2.EVENT_LBUTTONDOWN: |
if self.names[cls] not in self.classwise_counts: |
||||||
for i, point in enumerate(self.reg_pts): |
self.classwise_counts[self.names[cls]] = {"IN": 0, "OUT": 0} |
||||||
if ( |
|
||||||
isinstance(point, (tuple, list)) |
|
||||||
and len(point) >= 2 |
|
||||||
and (abs(x - point[0]) < 10 and abs(y - point[1]) < 10) |
|
||||||
): |
|
||||||
self.selected_point = i |
|
||||||
self.is_drawing = True |
|
||||||
break |
|
||||||
|
|
||||||
elif event == cv2.EVENT_MOUSEMOVE: |
|
||||||
if self.is_drawing and self.selected_point is not None: |
|
||||||
self.reg_pts[self.selected_point] = (x, y) |
|
||||||
self.counting_region = Polygon(self.reg_pts) |
|
||||||
|
|
||||||
elif event == cv2.EVENT_LBUTTONUP: |
|
||||||
self.is_drawing = False |
|
||||||
self.selected_point = None |
|
||||||
|
|
||||||
def extract_and_process_tracks(self, tracks): |
|
||||||
"""Extracts and processes tracks for object counting in a video stream.""" |
|
||||||
# Annotator Init and region drawing |
|
||||||
annotator = Annotator(self.im0, self.tf, self.names) |
|
||||||
|
|
||||||
# Draw region or line |
|
||||||
annotator.draw_region(reg_pts=self.reg_pts, color=(104, 0, 123), thickness=self.tf * 2) |
|
||||||
|
|
||||||
# Extract tracks for OBB or object detection |
|
||||||
track_data = tracks[0].obb or tracks[0].boxes |
|
||||||
|
|
||||||
if track_data and track_data.id is not None: |
|
||||||
boxes = track_data.xyxy.cpu() |
|
||||||
clss = track_data.cls.cpu().tolist() |
|
||||||
track_ids = track_data.id.int().cpu().tolist() |
|
||||||
|
|
||||||
# Extract tracks |
|
||||||
for box, track_id, cls in zip(boxes, track_ids, clss): |
|
||||||
# Draw bounding box |
|
||||||
annotator.box_label(box, label=self.names[cls], color=colors(int(track_id), True)) |
|
||||||
|
|
||||||
# Store class info |
|
||||||
if self.names[cls] not in self.class_wise_count: |
|
||||||
self.class_wise_count[self.names[cls]] = {"IN": 0, "OUT": 0} |
|
||||||
|
|
||||||
# Draw Tracks |
|
||||||
track_line = self.track_history[track_id] |
|
||||||
track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2))) |
|
||||||
if len(track_line) > 30: |
|
||||||
track_line.pop(0) |
|
||||||
|
|
||||||
# Draw track trails |
|
||||||
if self.draw_tracks: |
|
||||||
annotator.draw_centroid_and_tracks( |
|
||||||
track_line, |
|
||||||
color=colors(int(track_id), True), |
|
||||||
track_thickness=self.tf, |
|
||||||
) |
|
||||||
|
|
||||||
prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None |
def display_counts(self, im0): |
||||||
|
""" |
||||||
|
Helper function to display object counts on the frame. |
||||||
|
|
||||||
# Count objects in any polygon |
Args: |
||||||
if len(self.reg_pts) >= 3: |
im0 (ndarray): The input image or frame |
||||||
is_inside = self.counting_region.contains(Point(track_line[-1])) |
""" |
||||||
|
labels_dict = { |
||||||
if prev_position is not None and is_inside and track_id not in self.count_ids: |
str.capitalize(key): f"{'IN ' + str(value['IN']) if self.show_in else ''} " |
||||||
self.count_ids.append(track_id) |
f"{'OUT ' + str(value['OUT']) if self.show_out else ''}".strip() |
||||||
|
for key, value in self.classwise_counts.items() |
||||||
if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0: |
if value["IN"] != 0 or value["OUT"] != 0 |
||||||
self.in_counts += 1 |
} |
||||||
self.class_wise_count[self.names[cls]]["IN"] += 1 |
|
||||||
else: |
|
||||||
self.out_counts += 1 |
|
||||||
self.class_wise_count[self.names[cls]]["OUT"] += 1 |
|
||||||
|
|
||||||
# Count objects using line |
|
||||||
elif len(self.reg_pts) == 2: |
|
||||||
if ( |
|
||||||
prev_position is not None |
|
||||||
and track_id not in self.count_ids |
|
||||||
and LineString([(prev_position[0], prev_position[1]), (box[0], box[1])]).intersects( |
|
||||||
self.counting_line_segment |
|
||||||
) |
|
||||||
): |
|
||||||
self.count_ids.append(track_id) |
|
||||||
|
|
||||||
# Determine the direction of movement (IN or OUT) |
|
||||||
dx = (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) |
|
||||||
dy = (box[1] - prev_position[1]) * (self.counting_region.centroid.y - prev_position[1]) |
|
||||||
if dx > 0 and dy > 0: |
|
||||||
self.in_counts += 1 |
|
||||||
self.class_wise_count[self.names[cls]]["IN"] += 1 |
|
||||||
else: |
|
||||||
self.out_counts += 1 |
|
||||||
self.class_wise_count[self.names[cls]]["OUT"] += 1 |
|
||||||
|
|
||||||
labels_dict = {} |
|
||||||
|
|
||||||
for key, value in self.class_wise_count.items(): |
|
||||||
if value["IN"] != 0 or value["OUT"] != 0: |
|
||||||
if not self.view_in_counts and not self.view_out_counts: |
|
||||||
continue |
|
||||||
elif not self.view_in_counts: |
|
||||||
labels_dict[str.capitalize(key)] = f"OUT {value['OUT']}" |
|
||||||
elif not self.view_out_counts: |
|
||||||
labels_dict[str.capitalize(key)] = f"IN {value['IN']}" |
|
||||||
else: |
|
||||||
labels_dict[str.capitalize(key)] = f"IN {value['IN']} OUT {value['OUT']}" |
|
||||||
|
|
||||||
if labels_dict: |
if labels_dict: |
||||||
annotator.display_analytics(self.im0, labels_dict, (104, 31, 17), (255, 255, 255), 10) |
self.annotator.display_analytics(im0, labels_dict, (104, 31, 17), (255, 255, 255), 10) |
||||||
|
|
||||||
def display_frames(self): |
def count(self, im0): |
||||||
"""Displays the current frame with annotations and regions in a window.""" |
|
||||||
if self.env_check: |
|
||||||
cv2.namedWindow(self.window_name) |
|
||||||
if len(self.reg_pts) == 4: # only add mouse event If user drawn region |
|
||||||
cv2.setMouseCallback(self.window_name, self.mouse_event_for_region, {"region_points": self.reg_pts}) |
|
||||||
cv2.imshow(self.window_name, self.im0) |
|
||||||
# Break Window |
|
||||||
if cv2.waitKey(1) & 0xFF == ord("q"): |
|
||||||
return |
|
||||||
|
|
||||||
def start_counting(self, im0, tracks): |
|
||||||
""" |
""" |
||||||
Main function to start the object counting process. |
Processes input data (frames or object tracks) and updates counts. |
||||||
|
|
||||||
Args: |
Args: |
||||||
im0 (ndarray): Current frame from the video stream. |
im0 (ndarray): The input image that will be used for processing |
||||||
tracks (list): List of tracks obtained from the object tracking process. |
Returns |
||||||
|
im0 (ndarray): The processed image for more usage |
||||||
""" |
""" |
||||||
self.im0 = im0 # store image |
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator |
||||||
self.extract_and_process_tracks(tracks) # draw region even if no objects |
self.extract_tracks(im0) # Extract tracks |
||||||
|
|
||||||
if self.view_img: |
self.annotator.draw_region( |
||||||
self.display_frames() |
reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2 |
||||||
return self.im0 |
) # Draw region |
||||||
|
|
||||||
|
# Iterate over bounding boxes, track ids and classes index |
||||||
|
if self.track_data is not None and self.track_data.id is not None: |
||||||
|
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss): |
||||||
|
# Draw bounding box and counting region |
||||||
|
self.annotator.box_label(box, label=self.names[cls], color=colors(track_id, True)) |
||||||
|
self.store_tracking_history(track_id, box) # Store track history |
||||||
|
self.store_classwise_counts(cls) # store classwise counts in dict |
||||||
|
|
||||||
|
# Draw centroid of objects |
||||||
|
self.annotator.draw_centroid_and_tracks( |
||||||
|
self.track_line, color=colors(int(track_id), True), track_thickness=self.line_width |
||||||
|
) |
||||||
|
|
||||||
|
# store previous position of track for object counting |
||||||
|
prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None |
||||||
|
self.count_objects(self.track_line, box, track_id, prev_position, cls) # Perform object counting |
||||||
|
|
||||||
|
self.display_counts(im0) # Display the counts on the frame |
||||||
|
self.display_output(im0) # display output with base class function |
||||||
|
|
||||||
if __name__ == "__main__": |
return im0 # return output image for more usage |
||||||
classes_names = {0: "person", 1: "car"} # example class names |
|
||||||
ObjectCounter(classes_names) |
|
||||||
|
@ -0,0 +1,88 @@ |
|||||||
|
# Ultralytics YOLO 🚀, AGPL-3.0 license |
||||||
|
|
||||||
|
from collections import defaultdict |
||||||
|
from pathlib import Path |
||||||
|
|
||||||
|
import cv2 |
||||||
|
from shapely.geometry import LineString, Polygon |
||||||
|
|
||||||
|
from ultralytics import YOLO |
||||||
|
from ultralytics.utils import yaml_load |
||||||
|
from ultralytics.utils.checks import check_imshow |
||||||
|
|
||||||
|
DEFAULT_SOL_CFG_PATH = Path(__file__).resolve().parents[1] / "cfg/solutions/default.yaml" |
||||||
|
|
||||||
|
|
||||||
|
class BaseSolution: |
||||||
|
"""A class to manage all the Ultralytics Solutions: https://docs.ultralytics.com/solutions/.""" |
||||||
|
|
||||||
|
def __init__(self, **kwargs): |
||||||
|
""" |
||||||
|
Base initializer for all solutions. |
||||||
|
|
||||||
|
Child classes should call this with necessary parameters. |
||||||
|
""" |
||||||
|
# Load config and update with args |
||||||
|
self.CFG = yaml_load(DEFAULT_SOL_CFG_PATH) |
||||||
|
self.CFG.update(kwargs) |
||||||
|
print("Ultralytics Solutions: ✅", self.CFG) |
||||||
|
|
||||||
|
self.region = self.CFG["region"] # Store region data for other classes usage |
||||||
|
self.line_width = self.CFG["line_width"] # Store line_width for usage |
||||||
|
|
||||||
|
# Load Model and store classes names |
||||||
|
self.model = YOLO(self.CFG["model"]) |
||||||
|
self.names = self.model.names |
||||||
|
|
||||||
|
# Initialize environment and region setup |
||||||
|
self.env_check = check_imshow(warn=True) |
||||||
|
self.track_history = defaultdict(list) |
||||||
|
|
||||||
|
def extract_tracks(self, im0): |
||||||
|
""" |
||||||
|
Apply object tracking and extract tracks. |
||||||
|
|
||||||
|
Args: |
||||||
|
im0 (ndarray): The input image or frame |
||||||
|
""" |
||||||
|
self.tracks = self.model.track(source=im0, persist=True, classes=self.CFG["classes"]) |
||||||
|
|
||||||
|
# Extract tracks for OBB or object detection |
||||||
|
self.track_data = self.tracks[0].obb or self.tracks[0].boxes |
||||||
|
|
||||||
|
if self.track_data and self.track_data.id is not None: |
||||||
|
self.boxes = self.track_data.xyxy.cpu() |
||||||
|
self.clss = self.track_data.cls.cpu().tolist() |
||||||
|
self.track_ids = self.track_data.id.int().cpu().tolist() |
||||||
|
|
||||||
|
def store_tracking_history(self, track_id, box): |
||||||
|
""" |
||||||
|
Store object tracking history. |
||||||
|
|
||||||
|
Args: |
||||||
|
track_id (int): The track ID of the object |
||||||
|
box (list): Bounding box coordinates of the object |
||||||
|
""" |
||||||
|
# Store tracking history |
||||||
|
self.track_line = self.track_history[track_id] |
||||||
|
self.track_line.append(((box[0] + box[2]) / 2, (box[1] + box[3]) / 2)) |
||||||
|
if len(self.track_line) > 30: |
||||||
|
self.track_line.pop(0) |
||||||
|
|
||||||
|
def initialize_region(self): |
||||||
|
"""Initialize the counting region and line segment based on config.""" |
||||||
|
self.region = [(20, 400), (1260, 400)] if self.region is None else self.region |
||||||
|
self.r_s = Polygon(self.region) if len(self.region) >= 3 else LineString(self.region) |
||||||
|
self.l_s = LineString([(self.region[0][0], self.region[0][1]), (self.region[1][0], self.region[1][1])]) |
||||||
|
|
||||||
|
def display_output(self, im0): |
||||||
|
""" |
||||||
|
Display the results of the processing, which could involve showing frames, printing counts, or saving results. |
||||||
|
|
||||||
|
Args: |
||||||
|
im0 (ndarray): The input image or frame |
||||||
|
""" |
||||||
|
if self.CFG.get("show") and self.env_check: |
||||||
|
cv2.imshow("Ultralytics Solutions", im0) |
||||||
|
if cv2.waitKey(1) & 0xFF == ord("q"): |
||||||
|
return |
Loading…
Reference in new issue