diff --git a/docs/en/guides/object-counting.md b/docs/en/guides/object-counting.md index 8467271b3..1abb7d493 100644 --- a/docs/en/guides/object-counting.md +++ b/docs/en/guides/object-counting.md @@ -53,9 +53,8 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly ```python import cv2 - from ultralytics import YOLO, solutions + from ultralytics import solutions - model = YOLO("yolo11n.pt") cap = cv2.VideoCapture("path/to/video/file.mp4") assert cap.isOpened(), "Error reading video file" w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) @@ -68,21 +67,18 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly # Init Object Counter counter = solutions.ObjectCounter( - view_img=True, - reg_pts=region_points, - names=model.names, - draw_tracks=True, - line_thickness=2, + show=True, + region=region_points, + model="yolo11n.pt", ) + # Process video while cap.isOpened(): success, im0 = cap.read() if not success: print("Video frame is empty or video processing has been successfully completed.") break - tracks = model.track(im0, persist=True, show=False) - - im0 = counter.start_counting(im0, tracks) + im0 = counter.count(im0) video_writer.write(im0) cap.release() @@ -95,34 +91,32 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly ```python import cv2 - from ultralytics import YOLO, solutions + from ultralytics import solutions - model = YOLO("yolo11n-obb.pt") cap = cv2.VideoCapture("path/to/video/file.mp4") assert cap.isOpened(), "Error reading video file" w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) - # Define region points - region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)] + # line or region points + line_points = [(20, 400), (1080, 400)] # Video writer video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) # Init Object Counter counter = solutions.ObjectCounter( - view_img=True, - reg_pts=region_points, - names=model.names, - line_thickness=2, + show=True, + region=line_points, + model="yolo11n-obb.pt", ) + # Process video while cap.isOpened(): success, im0 = cap.read() if not success: print("Video frame is empty or video processing has been successfully completed.") break - tracks = model.track(im0, persist=True, show=False) - im0 = counter.start_counting(im0, tracks) + im0 = counter.count(im0) video_writer.write(im0) cap.release() @@ -135,14 +129,13 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly ```python import cv2 - from ultralytics import YOLO, solutions + from ultralytics import solutions - model = YOLO("yolo11n.pt") cap = cv2.VideoCapture("path/to/video/file.mp4") assert cap.isOpened(), "Error reading video file" w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) - # Define region points as a polygon with 5 points + # Define region points region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)] # Video writer @@ -150,20 +143,18 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly # Init Object Counter counter = solutions.ObjectCounter( - view_img=True, - reg_pts=region_points, - names=model.names, - draw_tracks=True, - line_thickness=2, + show=True, + region=region_points, + model="yolo11n.pt", ) + # Process video while cap.isOpened(): success, im0 = cap.read() if not success: print("Video frame is empty or video processing has been successfully completed.") break - tracks = model.track(im0, persist=True, show=False) - im0 = counter.start_counting(im0, tracks) + im0 = counter.count(im0) video_writer.write(im0) cap.release() @@ -176,14 +167,13 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly ```python import cv2 - from ultralytics import YOLO, solutions + from ultralytics import solutions - model = YOLO("yolo11n.pt") cap = cv2.VideoCapture("path/to/video/file.mp4") assert cap.isOpened(), "Error reading video file" w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) - # Define line points + # Define region points line_points = [(20, 400), (1080, 400)] # Video writer @@ -191,20 +181,18 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly # Init Object Counter counter = solutions.ObjectCounter( - view_img=True, - reg_pts=line_points, - names=model.names, - draw_tracks=True, - line_thickness=2, + show=True, + region=line_points, + model="yolo11n.pt", ) + # Process video while cap.isOpened(): success, im0 = cap.read() if not success: print("Video frame is empty or video processing has been successfully completed.") break - tracks = model.track(im0, persist=True, show=False) - im0 = counter.start_counting(im0, tracks) + im0 = counter.count(im0) video_writer.write(im0) cap.release() @@ -217,35 +205,29 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly ```python import cv2 - from ultralytics import YOLO, solutions + from ultralytics import solutions - model = YOLO("yolo11n.pt") cap = cv2.VideoCapture("path/to/video/file.mp4") assert cap.isOpened(), "Error reading video file" w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) - line_points = [(20, 400), (1080, 400)] # line or region points - classes_to_count = [0, 2] # person and car classes for count - # Video writer video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) # Init Object Counter counter = solutions.ObjectCounter( - view_img=True, - reg_pts=line_points, - names=model.names, - draw_tracks=True, - line_thickness=2, + show=True, + model="yolo11n.pt", + classes=[0, 1], ) + # Process video while cap.isOpened(): success, im0 = cap.read() if not success: print("Video frame is empty or video processing has been successfully completed.") break - tracks = model.track(im0, persist=True, show=False, classes=classes_to_count) - im0 = counter.start_counting(im0, tracks) + im0 = counter.count(im0) video_writer.write(im0) cap.release() @@ -253,23 +235,18 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly cv2.destroyAllWindows() ``` -???+ tip "Region is Movable" - - You can move the region anywhere in the frame by clicking on its edges - ### Argument `ObjectCounter` Here's a table with the `ObjectCounter` arguments: -| Name | Type | Default | Description | -| ----------------- | ------ | -------------------------- | ---------------------------------------------------------------------- | -| `names` | `dict` | `None` | Dictionary of classes names. | -| `reg_pts` | `list` | `[(20, 400), (1260, 400)]` | List of points defining the counting region. | -| `line_thickness` | `int` | `2` | Line thickness for bounding boxes. | -| `view_img` | `bool` | `False` | Flag to control whether to display the video stream. | -| `view_in_counts` | `bool` | `True` | Flag to control whether to display the in counts on the video stream. | -| `view_out_counts` | `bool` | `True` | Flag to control whether to display the out counts on the video stream. | -| `draw_tracks` | `bool` | `False` | Flag to control whether to draw the object tracks. | +| Name | Type | Default | Description | +| ------------ | ------ | -------------------------- | ---------------------------------------------------------------------- | +| `model` | `str` | `None` | Path to Ultralytics YOLO Model File | +| `region` | `list` | `[(20, 400), (1260, 400)]` | List of points defining the counting region. | +| `line_width` | `int` | `2` | Line thickness for bounding boxes. | +| `show` | `bool` | `False` | Flag to control whether to display the video stream. | +| `show_in` | `bool` | `True` | Flag to control whether to display the in counts on the video stream. | +| `show_out` | `bool` | `True` | Flag to control whether to display the out counts on the video stream. | ### Arguments `model.track` @@ -282,38 +259,34 @@ Here's a table with the `ObjectCounter` arguments: To count objects in a video using Ultralytics YOLO11, you can follow these steps: 1. Import the necessary libraries (`cv2`, `ultralytics`). -2. Load a pretrained YOLO11 model. -3. Define the counting region (e.g., a polygon, line, etc.). -4. Set up the video capture and initialize the object counter. -5. Process each frame to track objects and count them within the defined region. +2. Define the counting region (e.g., a polygon, line, etc.). +3. Set up the video capture and initialize the object counter. +4. Process each frame to track objects and count them within the defined region. Here's a simple example for counting in a region: ```python import cv2 -from ultralytics import YOLO, solutions +from ultralytics import solutions def count_objects_in_region(video_path, output_video_path, model_path): """Count objects in a specific region within a video.""" - model = YOLO(model_path) cap = cv2.VideoCapture(video_path) assert cap.isOpened(), "Error reading video file" w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) - region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)] video_writer = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) - counter = solutions.ObjectCounter( - view_img=True, reg_pts=region_points, names=model.names, draw_tracks=True, line_thickness=2 - ) + + region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)] + counter = solutions.ObjectCounter(show=True, region=region_points, model=model_path) while cap.isOpened(): success, im0 = cap.read() if not success: print("Video frame is empty or video processing has been successfully completed.") break - tracks = model.track(im0, persist=True, show=False) - im0 = counter.start_counting(im0, tracks) + im0 = counter.start_counting(im0) video_writer.write(im0) cap.release() @@ -343,28 +316,25 @@ To count specific classes of objects using Ultralytics YOLO11, you need to speci ```python import cv2 -from ultralytics import YOLO, solutions +from ultralytics import solutions def count_specific_classes(video_path, output_video_path, model_path, classes_to_count): """Count specific classes of objects in a video.""" - model = YOLO(model_path) cap = cv2.VideoCapture(video_path) assert cap.isOpened(), "Error reading video file" w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) - line_points = [(20, 400), (1080, 400)] video_writer = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) - counter = solutions.ObjectCounter( - view_img=True, reg_pts=line_points, names=model.names, draw_tracks=True, line_thickness=2 - ) + + line_points = [(20, 400), (1080, 400)] + counter = solutions.ObjectCounter(show=True, region=line_points, model=model_path, classes=classes_to_count) while cap.isOpened(): success, im0 = cap.read() if not success: print("Video frame is empty or video processing has been successfully completed.") break - tracks = model.track(im0, persist=True, show=False, classes=classes_to_count) - im0 = counter.start_counting(im0, tracks) + im0 = counter.start_counting(im0) video_writer.write(im0) cap.release() diff --git a/docs/en/reference/solutions/solutions.md b/docs/en/reference/solutions/solutions.md new file mode 100644 index 000000000..727a5fa75 --- /dev/null +++ b/docs/en/reference/solutions/solutions.md @@ -0,0 +1,16 @@ +--- +description: Explore the Ultralytics Solution Base class for real-time object counting,virtual gym, heatmaps, speed estimation using Ultralytics YOLO. Learn to implement Ultralytics solutions effectively. +keywords: Ultralytics, Solutions, Object counting, Speed Estimation, Heatmaps, Queue Management, AI Gym, YOLO, pose detection, gym step counting, real-time pose estimation, Python +--- + +# Reference for `ultralytics/solutions/solutions.py` + +!!! note + + This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/solutions.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/solutions.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/solutions.py) 🛠️. Thank you 🙏! + +
+ +## ::: ultralytics.solutions.solutions.BaseSolution + +

diff --git a/tests/test_solutions.py b/tests/test_solutions.py index fabec621d..55b8efc32 100644 --- a/tests/test_solutions.py +++ b/tests/test_solutions.py @@ -19,7 +19,7 @@ def test_major_solutions(): cap = cv2.VideoCapture("solutions_ci_demo.mp4") assert cap.isOpened(), "Error reading video file" region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)] - counter = solutions.ObjectCounter(reg_pts=region_points, names=names, view_img=False) + # counter = solutions.ObjectCounter(reg_pts=region_points, names=names, view_img=False) heatmap = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, names=names, view_img=False) speed = solutions.SpeedEstimator(reg_pts=region_points, names=names, view_img=False) queue = solutions.QueueManager(names=names, reg_pts=region_points, view_img=False) @@ -29,7 +29,7 @@ def test_major_solutions(): break original_im0 = im0.copy() tracks = model.track(im0, persist=True, show=False) - _ = counter.start_counting(original_im0.copy(), tracks) + # _ = counter.start_counting(original_im0.copy(), tracks) _ = heatmap.generate_heatmap(original_im0.copy(), tracks) _ = speed.estimate_speed(original_im0.copy(), tracks) _ = queue.process_queue(original_im0.copy(), tracks) diff --git a/ultralytics/cfg/solutions/default.yaml b/ultralytics/cfg/solutions/default.yaml new file mode 100644 index 000000000..ccbc23479 --- /dev/null +++ b/ultralytics/cfg/solutions/default.yaml @@ -0,0 +1,12 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +# Configuration for Ultralytics Solutions + +model: "yolo11n.pt" # The Ultralytics YOLO11 model to be used (e.g., yolo11n.pt for YOLO11 nano version) + +region: # Object counting, queue or speed estimation region points +line_width: 2 # Thickness of the lines used to draw regions on the image/video frames +show: True # Flag to control whether to display output image or not +show_in: True # Flag to display objects moving *into* the defined region +show_out: True # Flag to display objects moving *out of* the defined region +classes: # To count specific classes diff --git a/ultralytics/solutions/object_counter.py b/ultralytics/solutions/object_counter.py index cc7fe4594..073599a4c 100644 --- a/ultralytics/solutions/object_counter.py +++ b/ultralytics/solutions/object_counter.py @@ -1,243 +1,129 @@ # Ultralytics YOLO 🚀, AGPL-3.0 license -from collections import defaultdict +from shapely.geometry import LineString, Point -import cv2 - -from ultralytics.utils.checks import check_imshow, check_requirements +from ultralytics.solutions.solutions import BaseSolution # Import a parent class from ultralytics.utils.plotting import Annotator, colors -check_requirements("shapely>=2.0.0") -from shapely.geometry import LineString, Point, Polygon +class ObjectCounter(BaseSolution): + """A class to manage the counting of objects in a real-time video stream based on their tracks.""" + def __init__(self, **kwargs): + """Initialization function for Count class, a child class of BaseSolution class, can be used for counting the + objects. + """ + super().__init__(**kwargs) -class ObjectCounter: - """A class to manage the counting of objects in a real-time video stream based on their tracks.""" + self.in_count = 0 # Counter for objects moving inward + self.out_count = 0 # Counter for objects moving outward + self.counted_ids = [] # List of IDs of objects that have been counted + self.classwise_counts = {} # Dictionary for counts, categorized by object class - def __init__( - self, - names, - reg_pts=None, - line_thickness=2, - view_img=False, - view_in_counts=True, - view_out_counts=True, - draw_tracks=False, - ): + self.initialize_region() # Setup region and counting areas + + self.show_in = self.CFG["show_in"] + self.show_out = self.CFG["show_out"] + + def count_objects(self, track_line, box, track_id, prev_position, cls): """ - Initializes the ObjectCounter with various tracking and counting parameters. + Helper function to count objects within a polygonal region. Args: - names (dict): Dictionary of class names. - reg_pts (list): List of points defining the counting region. - line_thickness (int): Line thickness for bounding boxes. - view_img (bool): Flag to control whether to display the video stream. - view_in_counts (bool): Flag to control whether to display the in counts on the video stream. - view_out_counts (bool): Flag to control whether to display the out counts on the video stream. - draw_tracks (bool): Flag to control whether to draw the object tracks. + track_line (dict): last 30 frame track record + box (list): Bounding box data for specific track in current frame + track_id (int): track ID of the object + prev_position (tuple): last frame position coordinates of the track + cls (int): Class index for classwise count updates """ - # Mouse events - self.is_drawing = False - self.selected_point = None - - # Region & Line Information - self.reg_pts = [(20, 400), (1260, 400)] if reg_pts is None else reg_pts - self.counting_region = None - - # Image and annotation Information - self.im0 = None - self.tf = line_thickness - self.view_img = view_img - self.view_in_counts = view_in_counts - self.view_out_counts = view_out_counts - - self.names = names # Classes names - self.window_name = "Ultralytics YOLOv8 Object Counter" - - # Object counting Information - self.in_counts = 0 - self.out_counts = 0 - self.count_ids = [] - self.class_wise_count = {} - - # Tracks info - self.track_history = defaultdict(list) - self.draw_tracks = draw_tracks - - # Check if environment supports imshow - self.env_check = check_imshow(warn=True) - - # Initialize counting region - if len(self.reg_pts) == 2: - print("Line Counter Initiated.") - self.counting_region = LineString(self.reg_pts) - elif len(self.reg_pts) >= 3: - print("Polygon Counter Initiated.") - self.counting_region = Polygon(self.reg_pts) - else: - print("Invalid Region points provided, region_points must be 2 for lines or >= 3 for polygons.") - print("Using Line Counter Now") - self.counting_region = LineString(self.reg_pts) - - # Define the counting line segment - self.counting_line_segment = LineString( - [ - (self.reg_pts[0][0], self.reg_pts[0][1]), - (self.reg_pts[1][0], self.reg_pts[1][1]), - ] - ) - - def mouse_event_for_region(self, event, x, y, flags, params): + if prev_position is None or track_id in self.counted_ids: + return + + centroid = self.r_s.centroid + dx = (box[0] - prev_position[0]) * (centroid.x - prev_position[0]) + dy = (box[1] - prev_position[1]) * (centroid.y - prev_position[1]) + + if len(self.region) >= 3 and self.r_s.contains(Point(track_line[-1])): + self.counted_ids.append(track_id) + # For polygon region + if dx > 0: + self.in_count += 1 + self.classwise_counts[self.names[cls]]["IN"] += 1 + else: + self.out_count += 1 + self.classwise_counts[self.names[cls]]["OUT"] += 1 + + elif len(self.region) < 3 and LineString([prev_position, box[:2]]).intersects(self.l_s): + self.counted_ids.append(track_id) + # For linear region + if dx > 0 and dy > 0: + self.in_count += 1 + self.classwise_counts[self.names[cls]]["IN"] += 1 + else: + self.out_count += 1 + self.classwise_counts[self.names[cls]]["OUT"] += 1 + + def store_classwise_counts(self, cls): """ - Handles mouse events for defining and moving the counting region in a real-time video stream. + Initialize class-wise counts if not already present. Args: - event (int): The type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.). - x (int): The x-coordinate of the mouse pointer. - y (int): The y-coordinate of the mouse pointer. - flags (int): Any associated event flags (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY, etc.). - params (dict): Additional parameters for the function. + cls (int): Class index for classwise count updates """ - if event == cv2.EVENT_LBUTTONDOWN: - for i, point in enumerate(self.reg_pts): - if ( - isinstance(point, (tuple, list)) - and len(point) >= 2 - and (abs(x - point[0]) < 10 and abs(y - point[1]) < 10) - ): - self.selected_point = i - self.is_drawing = True - break - - elif event == cv2.EVENT_MOUSEMOVE: - if self.is_drawing and self.selected_point is not None: - self.reg_pts[self.selected_point] = (x, y) - self.counting_region = Polygon(self.reg_pts) - - elif event == cv2.EVENT_LBUTTONUP: - self.is_drawing = False - self.selected_point = None - - def extract_and_process_tracks(self, tracks): - """Extracts and processes tracks for object counting in a video stream.""" - # Annotator Init and region drawing - annotator = Annotator(self.im0, self.tf, self.names) - - # Draw region or line - annotator.draw_region(reg_pts=self.reg_pts, color=(104, 0, 123), thickness=self.tf * 2) - - # Extract tracks for OBB or object detection - track_data = tracks[0].obb or tracks[0].boxes - - if track_data and track_data.id is not None: - boxes = track_data.xyxy.cpu() - clss = track_data.cls.cpu().tolist() - track_ids = track_data.id.int().cpu().tolist() - - # Extract tracks - for box, track_id, cls in zip(boxes, track_ids, clss): - # Draw bounding box - annotator.box_label(box, label=self.names[cls], color=colors(int(track_id), True)) - - # Store class info - if self.names[cls] not in self.class_wise_count: - self.class_wise_count[self.names[cls]] = {"IN": 0, "OUT": 0} - - # Draw Tracks - track_line = self.track_history[track_id] - track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2))) - if len(track_line) > 30: - track_line.pop(0) - - # Draw track trails - if self.draw_tracks: - annotator.draw_centroid_and_tracks( - track_line, - color=colors(int(track_id), True), - track_thickness=self.tf, - ) + if self.names[cls] not in self.classwise_counts: + self.classwise_counts[self.names[cls]] = {"IN": 0, "OUT": 0} - prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None + def display_counts(self, im0): + """ + Helper function to display object counts on the frame. - # Count objects in any polygon - if len(self.reg_pts) >= 3: - is_inside = self.counting_region.contains(Point(track_line[-1])) - - if prev_position is not None and is_inside and track_id not in self.count_ids: - self.count_ids.append(track_id) - - if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0: - self.in_counts += 1 - self.class_wise_count[self.names[cls]]["IN"] += 1 - else: - self.out_counts += 1 - self.class_wise_count[self.names[cls]]["OUT"] += 1 - - # Count objects using line - elif len(self.reg_pts) == 2: - if ( - prev_position is not None - and track_id not in self.count_ids - and LineString([(prev_position[0], prev_position[1]), (box[0], box[1])]).intersects( - self.counting_line_segment - ) - ): - self.count_ids.append(track_id) - - # Determine the direction of movement (IN or OUT) - dx = (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) - dy = (box[1] - prev_position[1]) * (self.counting_region.centroid.y - prev_position[1]) - if dx > 0 and dy > 0: - self.in_counts += 1 - self.class_wise_count[self.names[cls]]["IN"] += 1 - else: - self.out_counts += 1 - self.class_wise_count[self.names[cls]]["OUT"] += 1 - - labels_dict = {} - - for key, value in self.class_wise_count.items(): - if value["IN"] != 0 or value["OUT"] != 0: - if not self.view_in_counts and not self.view_out_counts: - continue - elif not self.view_in_counts: - labels_dict[str.capitalize(key)] = f"OUT {value['OUT']}" - elif not self.view_out_counts: - labels_dict[str.capitalize(key)] = f"IN {value['IN']}" - else: - labels_dict[str.capitalize(key)] = f"IN {value['IN']} OUT {value['OUT']}" + Args: + im0 (ndarray): The input image or frame + """ + labels_dict = { + str.capitalize(key): f"{'IN ' + str(value['IN']) if self.show_in else ''} " + f"{'OUT ' + str(value['OUT']) if self.show_out else ''}".strip() + for key, value in self.classwise_counts.items() + if value["IN"] != 0 or value["OUT"] != 0 + } if labels_dict: - annotator.display_analytics(self.im0, labels_dict, (104, 31, 17), (255, 255, 255), 10) - - def display_frames(self): - """Displays the current frame with annotations and regions in a window.""" - if self.env_check: - cv2.namedWindow(self.window_name) - if len(self.reg_pts) == 4: # only add mouse event If user drawn region - cv2.setMouseCallback(self.window_name, self.mouse_event_for_region, {"region_points": self.reg_pts}) - cv2.imshow(self.window_name, self.im0) - # Break Window - if cv2.waitKey(1) & 0xFF == ord("q"): - return - - def start_counting(self, im0, tracks): + self.annotator.display_analytics(im0, labels_dict, (104, 31, 17), (255, 255, 255), 10) + + def count(self, im0): """ - Main function to start the object counting process. + Processes input data (frames or object tracks) and updates counts. Args: - im0 (ndarray): Current frame from the video stream. - tracks (list): List of tracks obtained from the object tracking process. + im0 (ndarray): The input image that will be used for processing + Returns + im0 (ndarray): The processed image for more usage """ - self.im0 = im0 # store image - self.extract_and_process_tracks(tracks) # draw region even if no objects - - if self.view_img: - self.display_frames() - return self.im0 + self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator + self.extract_tracks(im0) # Extract tracks + + self.annotator.draw_region( + reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2 + ) # Draw region + + # Iterate over bounding boxes, track ids and classes index + if self.track_data is not None and self.track_data.id is not None: + for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss): + # Draw bounding box and counting region + self.annotator.box_label(box, label=self.names[cls], color=colors(track_id, True)) + self.store_tracking_history(track_id, box) # Store track history + self.store_classwise_counts(cls) # store classwise counts in dict + + # Draw centroid of objects + self.annotator.draw_centroid_and_tracks( + self.track_line, color=colors(int(track_id), True), track_thickness=self.line_width + ) + + # store previous position of track for object counting + prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None + self.count_objects(self.track_line, box, track_id, prev_position, cls) # Perform object counting + self.display_counts(im0) # Display the counts on the frame + self.display_output(im0) # display output with base class function -if __name__ == "__main__": - classes_names = {0: "person", 1: "car"} # example class names - ObjectCounter(classes_names) + return im0 # return output image for more usage diff --git a/ultralytics/solutions/solutions.py b/ultralytics/solutions/solutions.py new file mode 100644 index 000000000..b122d9da9 --- /dev/null +++ b/ultralytics/solutions/solutions.py @@ -0,0 +1,88 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from collections import defaultdict +from pathlib import Path + +import cv2 +from shapely.geometry import LineString, Polygon + +from ultralytics import YOLO +from ultralytics.utils import yaml_load +from ultralytics.utils.checks import check_imshow + +DEFAULT_SOL_CFG_PATH = Path(__file__).resolve().parents[1] / "cfg/solutions/default.yaml" + + +class BaseSolution: + """A class to manage all the Ultralytics Solutions: https://docs.ultralytics.com/solutions/.""" + + def __init__(self, **kwargs): + """ + Base initializer for all solutions. + + Child classes should call this with necessary parameters. + """ + # Load config and update with args + self.CFG = yaml_load(DEFAULT_SOL_CFG_PATH) + self.CFG.update(kwargs) + print("Ultralytics Solutions: ✅", self.CFG) + + self.region = self.CFG["region"] # Store region data for other classes usage + self.line_width = self.CFG["line_width"] # Store line_width for usage + + # Load Model and store classes names + self.model = YOLO(self.CFG["model"]) + self.names = self.model.names + + # Initialize environment and region setup + self.env_check = check_imshow(warn=True) + self.track_history = defaultdict(list) + + def extract_tracks(self, im0): + """ + Apply object tracking and extract tracks. + + Args: + im0 (ndarray): The input image or frame + """ + self.tracks = self.model.track(source=im0, persist=True, classes=self.CFG["classes"]) + + # Extract tracks for OBB or object detection + self.track_data = self.tracks[0].obb or self.tracks[0].boxes + + if self.track_data and self.track_data.id is not None: + self.boxes = self.track_data.xyxy.cpu() + self.clss = self.track_data.cls.cpu().tolist() + self.track_ids = self.track_data.id.int().cpu().tolist() + + def store_tracking_history(self, track_id, box): + """ + Store object tracking history. + + Args: + track_id (int): The track ID of the object + box (list): Bounding box coordinates of the object + """ + # Store tracking history + self.track_line = self.track_history[track_id] + self.track_line.append(((box[0] + box[2]) / 2, (box[1] + box[3]) / 2)) + if len(self.track_line) > 30: + self.track_line.pop(0) + + def initialize_region(self): + """Initialize the counting region and line segment based on config.""" + self.region = [(20, 400), (1260, 400)] if self.region is None else self.region + self.r_s = Polygon(self.region) if len(self.region) >= 3 else LineString(self.region) + self.l_s = LineString([(self.region[0][0], self.region[0][1]), (self.region[1][0], self.region[1][1])]) + + def display_output(self, im0): + """ + Display the results of the processing, which could involve showing frames, printing counts, or saving results. + + Args: + im0 (ndarray): The input image or frame + """ + if self.CFG.get("show") and self.env_check: + cv2.imshow("Ultralytics Solutions", im0) + if cv2.waitKey(1) & 0xFF == ord("q"): + return