Introduced `BaseSolution` class for Ultralytics solutions (#16671)

Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/16690/head
Muhammad Rizwan Munawar 1 month ago committed by GitHub
parent e5d3427a52
commit 70ba988c68
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 140
      docs/en/guides/object-counting.md
  2. 16
      docs/en/reference/solutions/solutions.md
  3. 4
      tests/test_solutions.py
  4. 12
      ultralytics/cfg/solutions/default.yaml
  5. 318
      ultralytics/solutions/object_counter.py
  6. 88
      ultralytics/solutions/solutions.py

@ -53,9 +53,8 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
```python
import cv2
from ultralytics import YOLO, solutions
from ultralytics import solutions
model = YOLO("yolo11n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
@ -68,21 +67,18 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
# Init Object Counter
counter = solutions.ObjectCounter(
view_img=True,
reg_pts=region_points,
names=model.names,
draw_tracks=True,
line_thickness=2,
show=True,
region=region_points,
model="yolo11n.pt",
)
# Process video
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
tracks = model.track(im0, persist=True, show=False)
im0 = counter.start_counting(im0, tracks)
im0 = counter.count(im0)
video_writer.write(im0)
cap.release()
@ -95,34 +91,32 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
```python
import cv2
from ultralytics import YOLO, solutions
from ultralytics import solutions
model = YOLO("yolo11n-obb.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Define region points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
# line or region points
line_points = [(20, 400), (1080, 400)]
# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Init Object Counter
counter = solutions.ObjectCounter(
view_img=True,
reg_pts=region_points,
names=model.names,
line_thickness=2,
show=True,
region=line_points,
model="yolo11n-obb.pt",
)
# Process video
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
tracks = model.track(im0, persist=True, show=False)
im0 = counter.start_counting(im0, tracks)
im0 = counter.count(im0)
video_writer.write(im0)
cap.release()
@ -135,14 +129,13 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
```python
import cv2
from ultralytics import YOLO, solutions
from ultralytics import solutions
model = YOLO("yolo11n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Define region points as a polygon with 5 points
# Define region points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)]
# Video writer
@ -150,20 +143,18 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
# Init Object Counter
counter = solutions.ObjectCounter(
view_img=True,
reg_pts=region_points,
names=model.names,
draw_tracks=True,
line_thickness=2,
show=True,
region=region_points,
model="yolo11n.pt",
)
# Process video
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
tracks = model.track(im0, persist=True, show=False)
im0 = counter.start_counting(im0, tracks)
im0 = counter.count(im0)
video_writer.write(im0)
cap.release()
@ -176,14 +167,13 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
```python
import cv2
from ultralytics import YOLO, solutions
from ultralytics import solutions
model = YOLO("yolo11n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Define line points
# Define region points
line_points = [(20, 400), (1080, 400)]
# Video writer
@ -191,20 +181,18 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
# Init Object Counter
counter = solutions.ObjectCounter(
view_img=True,
reg_pts=line_points,
names=model.names,
draw_tracks=True,
line_thickness=2,
show=True,
region=line_points,
model="yolo11n.pt",
)
# Process video
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
tracks = model.track(im0, persist=True, show=False)
im0 = counter.start_counting(im0, tracks)
im0 = counter.count(im0)
video_writer.write(im0)
cap.release()
@ -217,35 +205,29 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
```python
import cv2
from ultralytics import YOLO, solutions
from ultralytics import solutions
model = YOLO("yolo11n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
line_points = [(20, 400), (1080, 400)] # line or region points
classes_to_count = [0, 2] # person and car classes for count
# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Init Object Counter
counter = solutions.ObjectCounter(
view_img=True,
reg_pts=line_points,
names=model.names,
draw_tracks=True,
line_thickness=2,
show=True,
model="yolo11n.pt",
classes=[0, 1],
)
# Process video
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
tracks = model.track(im0, persist=True, show=False, classes=classes_to_count)
im0 = counter.start_counting(im0, tracks)
im0 = counter.count(im0)
video_writer.write(im0)
cap.release()
@ -253,23 +235,18 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
cv2.destroyAllWindows()
```
???+ tip "Region is Movable"
You can move the region anywhere in the frame by clicking on its edges
### Argument `ObjectCounter`
Here's a table with the `ObjectCounter` arguments:
| Name | Type | Default | Description |
| ----------------- | ------ | -------------------------- | ---------------------------------------------------------------------- |
| `names` | `dict` | `None` | Dictionary of classes names. |
| `reg_pts` | `list` | `[(20, 400), (1260, 400)]` | List of points defining the counting region. |
| `line_thickness` | `int` | `2` | Line thickness for bounding boxes. |
| `view_img` | `bool` | `False` | Flag to control whether to display the video stream. |
| `view_in_counts` | `bool` | `True` | Flag to control whether to display the in counts on the video stream. |
| `view_out_counts` | `bool` | `True` | Flag to control whether to display the out counts on the video stream. |
| `draw_tracks` | `bool` | `False` | Flag to control whether to draw the object tracks. |
| Name | Type | Default | Description |
| ------------ | ------ | -------------------------- | ---------------------------------------------------------------------- |
| `model` | `str` | `None` | Path to Ultralytics YOLO Model File |
| `region` | `list` | `[(20, 400), (1260, 400)]` | List of points defining the counting region. |
| `line_width` | `int` | `2` | Line thickness for bounding boxes. |
| `show` | `bool` | `False` | Flag to control whether to display the video stream. |
| `show_in` | `bool` | `True` | Flag to control whether to display the in counts on the video stream. |
| `show_out` | `bool` | `True` | Flag to control whether to display the out counts on the video stream. |
### Arguments `model.track`
@ -282,38 +259,34 @@ Here's a table with the `ObjectCounter` arguments:
To count objects in a video using Ultralytics YOLO11, you can follow these steps:
1. Import the necessary libraries (`cv2`, `ultralytics`).
2. Load a pretrained YOLO11 model.
3. Define the counting region (e.g., a polygon, line, etc.).
4. Set up the video capture and initialize the object counter.
5. Process each frame to track objects and count them within the defined region.
2. Define the counting region (e.g., a polygon, line, etc.).
3. Set up the video capture and initialize the object counter.
4. Process each frame to track objects and count them within the defined region.
Here's a simple example for counting in a region:
```python
import cv2
from ultralytics import YOLO, solutions
from ultralytics import solutions
def count_objects_in_region(video_path, output_video_path, model_path):
"""Count objects in a specific region within a video."""
model = YOLO(model_path)
cap = cv2.VideoCapture(video_path)
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
video_writer = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
counter = solutions.ObjectCounter(
view_img=True, reg_pts=region_points, names=model.names, draw_tracks=True, line_thickness=2
)
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
counter = solutions.ObjectCounter(show=True, region=region_points, model=model_path)
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
tracks = model.track(im0, persist=True, show=False)
im0 = counter.start_counting(im0, tracks)
im0 = counter.start_counting(im0)
video_writer.write(im0)
cap.release()
@ -343,28 +316,25 @@ To count specific classes of objects using Ultralytics YOLO11, you need to speci
```python
import cv2
from ultralytics import YOLO, solutions
from ultralytics import solutions
def count_specific_classes(video_path, output_video_path, model_path, classes_to_count):
"""Count specific classes of objects in a video."""
model = YOLO(model_path)
cap = cv2.VideoCapture(video_path)
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
line_points = [(20, 400), (1080, 400)]
video_writer = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
counter = solutions.ObjectCounter(
view_img=True, reg_pts=line_points, names=model.names, draw_tracks=True, line_thickness=2
)
line_points = [(20, 400), (1080, 400)]
counter = solutions.ObjectCounter(show=True, region=line_points, model=model_path, classes=classes_to_count)
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
tracks = model.track(im0, persist=True, show=False, classes=classes_to_count)
im0 = counter.start_counting(im0, tracks)
im0 = counter.start_counting(im0)
video_writer.write(im0)
cap.release()

@ -0,0 +1,16 @@
---
description: Explore the Ultralytics Solution Base class for real-time object counting,virtual gym, heatmaps, speed estimation using Ultralytics YOLO. Learn to implement Ultralytics solutions effectively.
keywords: Ultralytics, Solutions, Object counting, Speed Estimation, Heatmaps, Queue Management, AI Gym, YOLO, pose detection, gym step counting, real-time pose estimation, Python
---
# Reference for `ultralytics/solutions/solutions.py`
!!! note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/solutions.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/solutions.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/solutions.py) 🛠. Thank you 🙏!
<br>
## ::: ultralytics.solutions.solutions.BaseSolution
<br><br>

@ -19,7 +19,7 @@ def test_major_solutions():
cap = cv2.VideoCapture("solutions_ci_demo.mp4")
assert cap.isOpened(), "Error reading video file"
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
counter = solutions.ObjectCounter(reg_pts=region_points, names=names, view_img=False)
# counter = solutions.ObjectCounter(reg_pts=region_points, names=names, view_img=False)
heatmap = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, names=names, view_img=False)
speed = solutions.SpeedEstimator(reg_pts=region_points, names=names, view_img=False)
queue = solutions.QueueManager(names=names, reg_pts=region_points, view_img=False)
@ -29,7 +29,7 @@ def test_major_solutions():
break
original_im0 = im0.copy()
tracks = model.track(im0, persist=True, show=False)
_ = counter.start_counting(original_im0.copy(), tracks)
# _ = counter.start_counting(original_im0.copy(), tracks)
_ = heatmap.generate_heatmap(original_im0.copy(), tracks)
_ = speed.estimate_speed(original_im0.copy(), tracks)
_ = queue.process_queue(original_im0.copy(), tracks)

@ -0,0 +1,12 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Configuration for Ultralytics Solutions
model: "yolo11n.pt" # The Ultralytics YOLO11 model to be used (e.g., yolo11n.pt for YOLO11 nano version)
region: # Object counting, queue or speed estimation region points
line_width: 2 # Thickness of the lines used to draw regions on the image/video frames
show: True # Flag to control whether to display output image or not
show_in: True # Flag to display objects moving *into* the defined region
show_out: True # Flag to display objects moving *out of* the defined region
classes: # To count specific classes

@ -1,243 +1,129 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from collections import defaultdict
from shapely.geometry import LineString, Point
import cv2
from ultralytics.utils.checks import check_imshow, check_requirements
from ultralytics.solutions.solutions import BaseSolution # Import a parent class
from ultralytics.utils.plotting import Annotator, colors
check_requirements("shapely>=2.0.0")
from shapely.geometry import LineString, Point, Polygon
class ObjectCounter(BaseSolution):
"""A class to manage the counting of objects in a real-time video stream based on their tracks."""
def __init__(self, **kwargs):
"""Initialization function for Count class, a child class of BaseSolution class, can be used for counting the
objects.
"""
super().__init__(**kwargs)
class ObjectCounter:
"""A class to manage the counting of objects in a real-time video stream based on their tracks."""
self.in_count = 0 # Counter for objects moving inward
self.out_count = 0 # Counter for objects moving outward
self.counted_ids = [] # List of IDs of objects that have been counted
self.classwise_counts = {} # Dictionary for counts, categorized by object class
def __init__(
self,
names,
reg_pts=None,
line_thickness=2,
view_img=False,
view_in_counts=True,
view_out_counts=True,
draw_tracks=False,
):
self.initialize_region() # Setup region and counting areas
self.show_in = self.CFG["show_in"]
self.show_out = self.CFG["show_out"]
def count_objects(self, track_line, box, track_id, prev_position, cls):
"""
Initializes the ObjectCounter with various tracking and counting parameters.
Helper function to count objects within a polygonal region.
Args:
names (dict): Dictionary of class names.
reg_pts (list): List of points defining the counting region.
line_thickness (int): Line thickness for bounding boxes.
view_img (bool): Flag to control whether to display the video stream.
view_in_counts (bool): Flag to control whether to display the in counts on the video stream.
view_out_counts (bool): Flag to control whether to display the out counts on the video stream.
draw_tracks (bool): Flag to control whether to draw the object tracks.
track_line (dict): last 30 frame track record
box (list): Bounding box data for specific track in current frame
track_id (int): track ID of the object
prev_position (tuple): last frame position coordinates of the track
cls (int): Class index for classwise count updates
"""
# Mouse events
self.is_drawing = False
self.selected_point = None
# Region & Line Information
self.reg_pts = [(20, 400), (1260, 400)] if reg_pts is None else reg_pts
self.counting_region = None
# Image and annotation Information
self.im0 = None
self.tf = line_thickness
self.view_img = view_img
self.view_in_counts = view_in_counts
self.view_out_counts = view_out_counts
self.names = names # Classes names
self.window_name = "Ultralytics YOLOv8 Object Counter"
# Object counting Information
self.in_counts = 0
self.out_counts = 0
self.count_ids = []
self.class_wise_count = {}
# Tracks info
self.track_history = defaultdict(list)
self.draw_tracks = draw_tracks
# Check if environment supports imshow
self.env_check = check_imshow(warn=True)
# Initialize counting region
if len(self.reg_pts) == 2:
print("Line Counter Initiated.")
self.counting_region = LineString(self.reg_pts)
elif len(self.reg_pts) >= 3:
print("Polygon Counter Initiated.")
self.counting_region = Polygon(self.reg_pts)
else:
print("Invalid Region points provided, region_points must be 2 for lines or >= 3 for polygons.")
print("Using Line Counter Now")
self.counting_region = LineString(self.reg_pts)
# Define the counting line segment
self.counting_line_segment = LineString(
[
(self.reg_pts[0][0], self.reg_pts[0][1]),
(self.reg_pts[1][0], self.reg_pts[1][1]),
]
)
def mouse_event_for_region(self, event, x, y, flags, params):
if prev_position is None or track_id in self.counted_ids:
return
centroid = self.r_s.centroid
dx = (box[0] - prev_position[0]) * (centroid.x - prev_position[0])
dy = (box[1] - prev_position[1]) * (centroid.y - prev_position[1])
if len(self.region) >= 3 and self.r_s.contains(Point(track_line[-1])):
self.counted_ids.append(track_id)
# For polygon region
if dx > 0:
self.in_count += 1
self.classwise_counts[self.names[cls]]["IN"] += 1
else:
self.out_count += 1
self.classwise_counts[self.names[cls]]["OUT"] += 1
elif len(self.region) < 3 and LineString([prev_position, box[:2]]).intersects(self.l_s):
self.counted_ids.append(track_id)
# For linear region
if dx > 0 and dy > 0:
self.in_count += 1
self.classwise_counts[self.names[cls]]["IN"] += 1
else:
self.out_count += 1
self.classwise_counts[self.names[cls]]["OUT"] += 1
def store_classwise_counts(self, cls):
"""
Handles mouse events for defining and moving the counting region in a real-time video stream.
Initialize class-wise counts if not already present.
Args:
event (int): The type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.).
x (int): The x-coordinate of the mouse pointer.
y (int): The y-coordinate of the mouse pointer.
flags (int): Any associated event flags (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY, etc.).
params (dict): Additional parameters for the function.
cls (int): Class index for classwise count updates
"""
if event == cv2.EVENT_LBUTTONDOWN:
for i, point in enumerate(self.reg_pts):
if (
isinstance(point, (tuple, list))
and len(point) >= 2
and (abs(x - point[0]) < 10 and abs(y - point[1]) < 10)
):
self.selected_point = i
self.is_drawing = True
break
elif event == cv2.EVENT_MOUSEMOVE:
if self.is_drawing and self.selected_point is not None:
self.reg_pts[self.selected_point] = (x, y)
self.counting_region = Polygon(self.reg_pts)
elif event == cv2.EVENT_LBUTTONUP:
self.is_drawing = False
self.selected_point = None
def extract_and_process_tracks(self, tracks):
"""Extracts and processes tracks for object counting in a video stream."""
# Annotator Init and region drawing
annotator = Annotator(self.im0, self.tf, self.names)
# Draw region or line
annotator.draw_region(reg_pts=self.reg_pts, color=(104, 0, 123), thickness=self.tf * 2)
# Extract tracks for OBB or object detection
track_data = tracks[0].obb or tracks[0].boxes
if track_data and track_data.id is not None:
boxes = track_data.xyxy.cpu()
clss = track_data.cls.cpu().tolist()
track_ids = track_data.id.int().cpu().tolist()
# Extract tracks
for box, track_id, cls in zip(boxes, track_ids, clss):
# Draw bounding box
annotator.box_label(box, label=self.names[cls], color=colors(int(track_id), True))
# Store class info
if self.names[cls] not in self.class_wise_count:
self.class_wise_count[self.names[cls]] = {"IN": 0, "OUT": 0}
# Draw Tracks
track_line = self.track_history[track_id]
track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)))
if len(track_line) > 30:
track_line.pop(0)
# Draw track trails
if self.draw_tracks:
annotator.draw_centroid_and_tracks(
track_line,
color=colors(int(track_id), True),
track_thickness=self.tf,
)
if self.names[cls] not in self.classwise_counts:
self.classwise_counts[self.names[cls]] = {"IN": 0, "OUT": 0}
prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None
def display_counts(self, im0):
"""
Helper function to display object counts on the frame.
# Count objects in any polygon
if len(self.reg_pts) >= 3:
is_inside = self.counting_region.contains(Point(track_line[-1]))
if prev_position is not None and is_inside and track_id not in self.count_ids:
self.count_ids.append(track_id)
if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
self.in_counts += 1
self.class_wise_count[self.names[cls]]["IN"] += 1
else:
self.out_counts += 1
self.class_wise_count[self.names[cls]]["OUT"] += 1
# Count objects using line
elif len(self.reg_pts) == 2:
if (
prev_position is not None
and track_id not in self.count_ids
and LineString([(prev_position[0], prev_position[1]), (box[0], box[1])]).intersects(
self.counting_line_segment
)
):
self.count_ids.append(track_id)
# Determine the direction of movement (IN or OUT)
dx = (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0])
dy = (box[1] - prev_position[1]) * (self.counting_region.centroid.y - prev_position[1])
if dx > 0 and dy > 0:
self.in_counts += 1
self.class_wise_count[self.names[cls]]["IN"] += 1
else:
self.out_counts += 1
self.class_wise_count[self.names[cls]]["OUT"] += 1
labels_dict = {}
for key, value in self.class_wise_count.items():
if value["IN"] != 0 or value["OUT"] != 0:
if not self.view_in_counts and not self.view_out_counts:
continue
elif not self.view_in_counts:
labels_dict[str.capitalize(key)] = f"OUT {value['OUT']}"
elif not self.view_out_counts:
labels_dict[str.capitalize(key)] = f"IN {value['IN']}"
else:
labels_dict[str.capitalize(key)] = f"IN {value['IN']} OUT {value['OUT']}"
Args:
im0 (ndarray): The input image or frame
"""
labels_dict = {
str.capitalize(key): f"{'IN ' + str(value['IN']) if self.show_in else ''} "
f"{'OUT ' + str(value['OUT']) if self.show_out else ''}".strip()
for key, value in self.classwise_counts.items()
if value["IN"] != 0 or value["OUT"] != 0
}
if labels_dict:
annotator.display_analytics(self.im0, labels_dict, (104, 31, 17), (255, 255, 255), 10)
def display_frames(self):
"""Displays the current frame with annotations and regions in a window."""
if self.env_check:
cv2.namedWindow(self.window_name)
if len(self.reg_pts) == 4: # only add mouse event If user drawn region
cv2.setMouseCallback(self.window_name, self.mouse_event_for_region, {"region_points": self.reg_pts})
cv2.imshow(self.window_name, self.im0)
# Break Window
if cv2.waitKey(1) & 0xFF == ord("q"):
return
def start_counting(self, im0, tracks):
self.annotator.display_analytics(im0, labels_dict, (104, 31, 17), (255, 255, 255), 10)
def count(self, im0):
"""
Main function to start the object counting process.
Processes input data (frames or object tracks) and updates counts.
Args:
im0 (ndarray): Current frame from the video stream.
tracks (list): List of tracks obtained from the object tracking process.
im0 (ndarray): The input image that will be used for processing
Returns
im0 (ndarray): The processed image for more usage
"""
self.im0 = im0 # store image
self.extract_and_process_tracks(tracks) # draw region even if no objects
if self.view_img:
self.display_frames()
return self.im0
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
self.extract_tracks(im0) # Extract tracks
self.annotator.draw_region(
reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2
) # Draw region
# Iterate over bounding boxes, track ids and classes index
if self.track_data is not None and self.track_data.id is not None:
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
# Draw bounding box and counting region
self.annotator.box_label(box, label=self.names[cls], color=colors(track_id, True))
self.store_tracking_history(track_id, box) # Store track history
self.store_classwise_counts(cls) # store classwise counts in dict
# Draw centroid of objects
self.annotator.draw_centroid_and_tracks(
self.track_line, color=colors(int(track_id), True), track_thickness=self.line_width
)
# store previous position of track for object counting
prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None
self.count_objects(self.track_line, box, track_id, prev_position, cls) # Perform object counting
self.display_counts(im0) # Display the counts on the frame
self.display_output(im0) # display output with base class function
if __name__ == "__main__":
classes_names = {0: "person", 1: "car"} # example class names
ObjectCounter(classes_names)
return im0 # return output image for more usage

@ -0,0 +1,88 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from collections import defaultdict
from pathlib import Path
import cv2
from shapely.geometry import LineString, Polygon
from ultralytics import YOLO
from ultralytics.utils import yaml_load
from ultralytics.utils.checks import check_imshow
DEFAULT_SOL_CFG_PATH = Path(__file__).resolve().parents[1] / "cfg/solutions/default.yaml"
class BaseSolution:
"""A class to manage all the Ultralytics Solutions: https://docs.ultralytics.com/solutions/."""
def __init__(self, **kwargs):
"""
Base initializer for all solutions.
Child classes should call this with necessary parameters.
"""
# Load config and update with args
self.CFG = yaml_load(DEFAULT_SOL_CFG_PATH)
self.CFG.update(kwargs)
print("Ultralytics Solutions: ✅", self.CFG)
self.region = self.CFG["region"] # Store region data for other classes usage
self.line_width = self.CFG["line_width"] # Store line_width for usage
# Load Model and store classes names
self.model = YOLO(self.CFG["model"])
self.names = self.model.names
# Initialize environment and region setup
self.env_check = check_imshow(warn=True)
self.track_history = defaultdict(list)
def extract_tracks(self, im0):
"""
Apply object tracking and extract tracks.
Args:
im0 (ndarray): The input image or frame
"""
self.tracks = self.model.track(source=im0, persist=True, classes=self.CFG["classes"])
# Extract tracks for OBB or object detection
self.track_data = self.tracks[0].obb or self.tracks[0].boxes
if self.track_data and self.track_data.id is not None:
self.boxes = self.track_data.xyxy.cpu()
self.clss = self.track_data.cls.cpu().tolist()
self.track_ids = self.track_data.id.int().cpu().tolist()
def store_tracking_history(self, track_id, box):
"""
Store object tracking history.
Args:
track_id (int): The track ID of the object
box (list): Bounding box coordinates of the object
"""
# Store tracking history
self.track_line = self.track_history[track_id]
self.track_line.append(((box[0] + box[2]) / 2, (box[1] + box[3]) / 2))
if len(self.track_line) > 30:
self.track_line.pop(0)
def initialize_region(self):
"""Initialize the counting region and line segment based on config."""
self.region = [(20, 400), (1260, 400)] if self.region is None else self.region
self.r_s = Polygon(self.region) if len(self.region) >= 3 else LineString(self.region)
self.l_s = LineString([(self.region[0][0], self.region[0][1]), (self.region[1][0], self.region[1][1])])
def display_output(self, im0):
"""
Display the results of the processing, which could involve showing frames, printing counts, or saving results.
Args:
im0 (ndarray): The input image or frame
"""
if self.CFG.get("show") and self.env_check:
cv2.imshow("Ultralytics Solutions", im0)
if cv2.waitKey(1) & 0xFF == ord("q"):
return
Loading…
Cancel
Save