Fix CLI detect and segment resume (#134)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/141/head
Ayush Chaurasia 2 years ago committed by GitHub
parent c5c86a3acd
commit 6d5123297e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 9
      ultralytics/yolo/engine/model.py
  2. 7
      ultralytics/yolo/v8/segment/train.py

@ -47,6 +47,7 @@ class YOLO:
self.trainer = None # trainer object
self.task = None # task type
self.ckpt = None # if loaded from *.pt
self.ckpt_path = None
self.cfg = None # if loaded from *.yaml
self.overrides = {} # overrides for trainer object
self.init_disabled = False # disable model initialization
@ -78,6 +79,7 @@ class YOLO:
weights (str): model checkpoint to be loaded
"""
self.model = attempt_load_weights(weights)
self.ckpt_path = weights
self.task = self.model.args["task"]
self.overrides = self.model.args
self.overrides["device"] = '' # reset device
@ -177,8 +179,8 @@ class YOLO:
"""
if not self.model:
raise AttributeError("model not initialized. Use .new() or .load()")
overrides = kwargs
overrides = self.overrides.copy()
overrides.update(kwargs)
if kwargs.get("cfg"):
LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.")
overrides = yaml_load(check_yaml(kwargs["cfg"]))
@ -187,7 +189,10 @@ class YOLO:
if not overrides.get("data"):
raise AttributeError("dataset not provided! Please define `data` in config.yaml or pass as an argument.")
if overrides.get("resume"):
overrides["resume"] = self.ckpt_path
self.trainer = self.TrainerClass(overrides=overrides)
if not overrides.get("resume"):
self.trainer.model = self.trainer.load_model(weights=self.model,
model_cfg=self.model.yaml if self.task != "classify" else None)
self.model = self.trainer.model # override here to save memory

@ -17,9 +17,12 @@ from ultralytics.yolo.utils.torch_utils import de_parallel
class SegmentationTrainer(v8.detect.DetectionTrainer):
def load_model(self, model_cfg=None, weights=None, verbose=True):
model = SegmentationModel(model_cfg or weights.yaml, ch=3, nc=self.data["nc"], verbose=verbose)
model = SegmentationModel(model_cfg or getattr(weights, 'yaml', None) or weights['model'].yaml,
ch=3,
nc=self.data["nc"],
verbose=verbose)
if weights:
model.load(weights, verbose)
model.load(weights['model'] if isinstance(weights, dict) else weights, verbose)
return model
def get_validator(self):

Loading…
Cancel
Save