|
|
|
@ -0,0 +1,105 @@ |
|
|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
|
import matplotlib.image as mpimg |
|
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
|
|
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING |
|
|
|
|
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params |
|
|
|
|
|
|
|
|
|
try: |
|
|
|
|
import neptune |
|
|
|
|
from neptune.types import File |
|
|
|
|
|
|
|
|
|
assert not TESTS_RUNNING # do not log pytest |
|
|
|
|
assert hasattr(neptune, '__version__') |
|
|
|
|
except (ImportError, AssertionError): |
|
|
|
|
neptune = None |
|
|
|
|
|
|
|
|
|
run = None # NeptuneAI experiment logger instance |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _log_scalars(scalars, step=0): |
|
|
|
|
"""Log scalars to the NeptuneAI experiment logger.""" |
|
|
|
|
if run: |
|
|
|
|
for k, v in scalars.items(): |
|
|
|
|
run[k].append(value=v, step=step) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _log_images(imgs_dict, group=''): |
|
|
|
|
"""Log scalars to the NeptuneAI experiment logger.""" |
|
|
|
|
if run: |
|
|
|
|
for k, v in imgs_dict.items(): |
|
|
|
|
run[f'{group}/{k}'].upload(File(v)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _log_plot(title, plot_path): |
|
|
|
|
"""Log plots to the NeptuneAI experiment logger.""" |
|
|
|
|
""" |
|
|
|
|
Log image as plot in the plot section of NeptuneAI |
|
|
|
|
|
|
|
|
|
arguments: |
|
|
|
|
title (str) Title of the plot |
|
|
|
|
plot_path (PosixPath or str) Path to the saved image file |
|
|
|
|
""" |
|
|
|
|
img = mpimg.imread(plot_path) |
|
|
|
|
fig = plt.figure() |
|
|
|
|
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks |
|
|
|
|
ax.imshow(img) |
|
|
|
|
run[f'Plots/{title}'].upload(fig) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_pretrain_routine_start(trainer): |
|
|
|
|
"""Callback function called before the training routine starts.""" |
|
|
|
|
try: |
|
|
|
|
global run |
|
|
|
|
run = neptune.init_run(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, tags=['YOLOv8']) |
|
|
|
|
run['Configuration/Hyperparameters'] = {k: '' if v is None else v for k, v in vars(trainer.args).items()} |
|
|
|
|
except Exception as e: |
|
|
|
|
LOGGER.warning(f'WARNING ⚠️ NeptuneAI installed but not initialized correctly, not logging this run. {e}') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_train_epoch_end(trainer): |
|
|
|
|
"""Callback function called at end of each training epoch.""" |
|
|
|
|
_log_scalars(trainer.label_loss_items(trainer.tloss, prefix='train'), trainer.epoch + 1) |
|
|
|
|
_log_scalars(trainer.lr, trainer.epoch + 1) |
|
|
|
|
if trainer.epoch == 1: |
|
|
|
|
_log_images({f.stem: str(f) for f in trainer.save_dir.glob('train_batch*.jpg')}, 'Mosaic') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_fit_epoch_end(trainer): |
|
|
|
|
"""Callback function called at end of each fit (train+val) epoch.""" |
|
|
|
|
if run and trainer.epoch == 0: |
|
|
|
|
model_info = { |
|
|
|
|
'parameters': get_num_params(trainer.model), |
|
|
|
|
'GFLOPs': round(get_flops(trainer.model), 3), |
|
|
|
|
'speed(ms)': round(trainer.validator.speed['inference'], 3)} |
|
|
|
|
run['Configuration/Model'] = model_info |
|
|
|
|
_log_scalars(trainer.metrics, trainer.epoch + 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_val_end(validator): |
|
|
|
|
"""Callback function called at end of each validation.""" |
|
|
|
|
if run: |
|
|
|
|
# Log val_labels and val_pred |
|
|
|
|
_log_images({f.stem: str(f) for f in validator.save_dir.glob('val*.jpg')}, 'Validation') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_train_end(trainer): |
|
|
|
|
"""Callback function called at end of training.""" |
|
|
|
|
if run: |
|
|
|
|
# Log final results, CM matrix + PR plots |
|
|
|
|
files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] |
|
|
|
|
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter |
|
|
|
|
for f in files: |
|
|
|
|
_log_plot(title=f.stem, plot_path=f) |
|
|
|
|
# Log the final model |
|
|
|
|
run[f'weights/{trainer.args.name or trainer.args.task}/{str(trainer.best.name)}'].upload(File(str( |
|
|
|
|
trainer.best))) |
|
|
|
|
run.stop() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
callbacks = { |
|
|
|
|
'on_pretrain_routine_start': on_pretrain_routine_start, |
|
|
|
|
'on_train_epoch_end': on_train_epoch_end, |
|
|
|
|
'on_fit_epoch_end': on_fit_epoch_end, |
|
|
|
|
'on_val_end': on_val_end, |
|
|
|
|
'on_train_end': on_train_end} if neptune else {} |