|
|
@ -38,7 +38,7 @@ def test_model_forward(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_model_methods(): |
|
|
|
def test_model_methods(): |
|
|
|
"""Test various methods and properties of the YOLO model.""" |
|
|
|
"""Test various methods and properties of the YOLO model to ensure correct functionality.""" |
|
|
|
model = YOLO(MODEL) |
|
|
|
model = YOLO(MODEL) |
|
|
|
|
|
|
|
|
|
|
|
# Model methods |
|
|
|
# Model methods |
|
|
@ -58,7 +58,7 @@ def test_model_methods(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_model_profile(): |
|
|
|
def test_model_profile(): |
|
|
|
"""Test profiling of the YOLO model with 'profile=True' argument.""" |
|
|
|
"""Test profiling of the YOLO model with `profile=True` to assess performance and resource usage.""" |
|
|
|
from ultralytics.nn.tasks import DetectionModel |
|
|
|
from ultralytics.nn.tasks import DetectionModel |
|
|
|
|
|
|
|
|
|
|
|
model = DetectionModel() # build model |
|
|
|
model = DetectionModel() # build model |
|
|
@ -68,7 +68,7 @@ def test_model_profile(): |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable") |
|
|
|
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable") |
|
|
|
def test_predict_txt(): |
|
|
|
def test_predict_txt(): |
|
|
|
"""Test YOLO predictions with sources (file, dir, glob, recursive glob) specified in a text file.""" |
|
|
|
"""Tests YOLO predictions with file, directory, and pattern sources listed in a text file.""" |
|
|
|
txt_file = TMP / "sources.txt" |
|
|
|
txt_file = TMP / "sources.txt" |
|
|
|
with open(txt_file, "w") as f: |
|
|
|
with open(txt_file, "w") as f: |
|
|
|
for x in [ASSETS / "bus.jpg", ASSETS, ASSETS / "*", ASSETS / "**/*.jpg"]: |
|
|
|
for x in [ASSETS / "bus.jpg", ASSETS, ASSETS / "*", ASSETS / "**/*.jpg"]: |
|
|
@ -78,7 +78,7 @@ def test_predict_txt(): |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model_name", MODELS) |
|
|
|
@pytest.mark.parametrize("model_name", MODELS) |
|
|
|
def test_predict_img(model_name): |
|
|
|
def test_predict_img(model_name): |
|
|
|
"""Test YOLO prediction on various types of image sources.""" |
|
|
|
"""Test YOLO model predictions on various image input types and sources, including online images.""" |
|
|
|
model = YOLO(WEIGHTS_DIR / model_name) |
|
|
|
model = YOLO(WEIGHTS_DIR / model_name) |
|
|
|
im = cv2.imread(str(SOURCE)) # uint8 numpy array |
|
|
|
im = cv2.imread(str(SOURCE)) # uint8 numpy array |
|
|
|
assert len(model(source=Image.open(SOURCE), save=True, verbose=True, imgsz=32)) == 1 # PIL |
|
|
|
assert len(model(source=Image.open(SOURCE), save=True, verbose=True, imgsz=32)) == 1 # PIL |
|
|
@ -100,12 +100,12 @@ def test_predict_img(model_name): |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS) |
|
|
|
@pytest.mark.parametrize("model", MODELS) |
|
|
|
def test_predict_visualize(model): |
|
|
|
def test_predict_visualize(model): |
|
|
|
"""Test model predict methods with 'visualize=True' arguments.""" |
|
|
|
"""Test model prediction methods with 'visualize=True' to generate and display prediction visualizations.""" |
|
|
|
YOLO(WEIGHTS_DIR / model)(SOURCE, imgsz=32, visualize=True) |
|
|
|
YOLO(WEIGHTS_DIR / model)(SOURCE, imgsz=32, visualize=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_predict_grey_and_4ch(): |
|
|
|
def test_predict_grey_and_4ch(): |
|
|
|
"""Test YOLO prediction on SOURCE converted to greyscale and 4-channel images.""" |
|
|
|
"""Test YOLO prediction on SOURCE converted to greyscale and 4-channel images with various filenames.""" |
|
|
|
im = Image.open(SOURCE) |
|
|
|
im = Image.open(SOURCE) |
|
|
|
directory = TMP / "im4" |
|
|
|
directory = TMP / "im4" |
|
|
|
directory.mkdir(parents=True, exist_ok=True) |
|
|
|
directory.mkdir(parents=True, exist_ok=True) |
|
|
@ -132,11 +132,7 @@ def test_predict_grey_and_4ch(): |
|
|
|
@pytest.mark.slow |
|
|
|
@pytest.mark.slow |
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
|
|
def test_youtube(): |
|
|
|
def test_youtube(): |
|
|
|
""" |
|
|
|
"""Test YOLO model on a YouTube video stream, handling potential network-related errors.""" |
|
|
|
Test YouTube inference. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Note: ConnectionError may occur during this test due to network instability or YouTube server availability. |
|
|
|
|
|
|
|
""" |
|
|
|
|
|
|
|
model = YOLO(MODEL) |
|
|
|
model = YOLO(MODEL) |
|
|
|
try: |
|
|
|
try: |
|
|
|
model.predict("https://youtu.be/G17sBkb38XQ", imgsz=96, save=True) |
|
|
|
model.predict("https://youtu.be/G17sBkb38XQ", imgsz=96, save=True) |
|
|
@ -149,9 +145,9 @@ def test_youtube(): |
|
|
|
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable") |
|
|
|
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable") |
|
|
|
def test_track_stream(): |
|
|
|
def test_track_stream(): |
|
|
|
""" |
|
|
|
""" |
|
|
|
Test streaming tracking (short 10 frame video) with non-default ByteTrack tracker. |
|
|
|
Tests streaming tracking on a short 10 frame video using ByteTrack tracker and different GMC methods. |
|
|
|
|
|
|
|
|
|
|
|
Note imgsz=160 required for tracking for higher confidence and better matches |
|
|
|
Note imgsz=160 required for tracking for higher confidence and better matches. |
|
|
|
""" |
|
|
|
""" |
|
|
|
video_url = "https://ultralytics.com/assets/decelera_portrait_min.mov" |
|
|
|
video_url = "https://ultralytics.com/assets/decelera_portrait_min.mov" |
|
|
|
model = YOLO(MODEL) |
|
|
|
model = YOLO(MODEL) |
|
|
@ -175,21 +171,21 @@ def test_val(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_train_scratch(): |
|
|
|
def test_train_scratch(): |
|
|
|
"""Test training the YOLO model from scratch.""" |
|
|
|
"""Test training the YOLO model from scratch using the provided configuration.""" |
|
|
|
model = YOLO(CFG) |
|
|
|
model = YOLO(CFG) |
|
|
|
model.train(data="coco8.yaml", epochs=2, imgsz=32, cache="disk", batch=-1, close_mosaic=1, name="model") |
|
|
|
model.train(data="coco8.yaml", epochs=2, imgsz=32, cache="disk", batch=-1, close_mosaic=1, name="model") |
|
|
|
model(SOURCE) |
|
|
|
model(SOURCE) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_train_pretrained(): |
|
|
|
def test_train_pretrained(): |
|
|
|
"""Test training the YOLO model from a pre-trained state.""" |
|
|
|
"""Test training of the YOLO model starting from a pre-trained checkpoint.""" |
|
|
|
model = YOLO(WEIGHTS_DIR / "yolov8n-seg.pt") |
|
|
|
model = YOLO(WEIGHTS_DIR / "yolov8n-seg.pt") |
|
|
|
model.train(data="coco8-seg.yaml", epochs=1, imgsz=32, cache="ram", copy_paste=0.5, mixup=0.5, name=0) |
|
|
|
model.train(data="coco8-seg.yaml", epochs=1, imgsz=32, cache="ram", copy_paste=0.5, mixup=0.5, name=0) |
|
|
|
model(SOURCE) |
|
|
|
model(SOURCE) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_all_model_yamls(): |
|
|
|
def test_all_model_yamls(): |
|
|
|
"""Test YOLO model creation for all available YAML configurations.""" |
|
|
|
"""Test YOLO model creation for all available YAML configurations in the `cfg/models` directory.""" |
|
|
|
for m in (ROOT / "cfg" / "models").rglob("*.yaml"): |
|
|
|
for m in (ROOT / "cfg" / "models").rglob("*.yaml"): |
|
|
|
if "rtdetr" in m.name: |
|
|
|
if "rtdetr" in m.name: |
|
|
|
if TORCH_1_9: # torch<=1.8 issue - TypeError: __init__() got an unexpected keyword argument 'batch_first' |
|
|
|
if TORCH_1_9: # torch<=1.8 issue - TypeError: __init__() got an unexpected keyword argument 'batch_first' |
|
|
@ -208,7 +204,7 @@ def test_workflow(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_predict_callback_and_setup(): |
|
|
|
def test_predict_callback_and_setup(): |
|
|
|
"""Test callback functionality during YOLO prediction.""" |
|
|
|
"""Test callback functionality during YOLO prediction setup and execution.""" |
|
|
|
|
|
|
|
|
|
|
|
def on_predict_batch_end(predictor): |
|
|
|
def on_predict_batch_end(predictor): |
|
|
|
"""Callback function that handles operations at the end of a prediction batch.""" |
|
|
|
"""Callback function that handles operations at the end of a prediction batch.""" |
|
|
@ -232,7 +228,7 @@ def test_predict_callback_and_setup(): |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS) |
|
|
|
@pytest.mark.parametrize("model", MODELS) |
|
|
|
def test_results(model): |
|
|
|
def test_results(model): |
|
|
|
"""Test various result formats for the YOLO model.""" |
|
|
|
"""Ensure YOLO model predictions can be processed and printed in various formats.""" |
|
|
|
results = YOLO(WEIGHTS_DIR / model)([SOURCE, SOURCE], imgsz=160) |
|
|
|
results = YOLO(WEIGHTS_DIR / model)([SOURCE, SOURCE], imgsz=160) |
|
|
|
for r in results: |
|
|
|
for r in results: |
|
|
|
r = r.cpu().numpy() |
|
|
|
r = r.cpu().numpy() |
|
|
@ -247,7 +243,7 @@ def test_results(model): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_labels_and_crops(): |
|
|
|
def test_labels_and_crops(): |
|
|
|
"""Test output from prediction args for saving detection labels and crops.""" |
|
|
|
"""Test output from prediction args for saving YOLO detection labels and crops; ensures accurate saving.""" |
|
|
|
imgs = [SOURCE, ASSETS / "zidane.jpg"] |
|
|
|
imgs = [SOURCE, ASSETS / "zidane.jpg"] |
|
|
|
results = YOLO(WEIGHTS_DIR / "yolov8n.pt")(imgs, imgsz=160, save_txt=True, save_crop=True) |
|
|
|
results = YOLO(WEIGHTS_DIR / "yolov8n.pt")(imgs, imgsz=160, save_txt=True, save_crop=True) |
|
|
|
save_path = Path(results[0].save_dir) |
|
|
|
save_path = Path(results[0].save_dir) |
|
|
@ -270,7 +266,7 @@ def test_labels_and_crops(): |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
|
|
def test_data_utils(): |
|
|
|
def test_data_utils(): |
|
|
|
"""Test utility functions in ultralytics/data/utils.py.""" |
|
|
|
"""Test utility functions in ultralytics/data/utils.py, including dataset stats and auto-splitting.""" |
|
|
|
from ultralytics.data.utils import HUBDatasetStats, autosplit |
|
|
|
from ultralytics.data.utils import HUBDatasetStats, autosplit |
|
|
|
from ultralytics.utils.downloads import zip_directory |
|
|
|
from ultralytics.utils.downloads import zip_directory |
|
|
|
|
|
|
|
|
|
|
@ -290,7 +286,7 @@ def test_data_utils(): |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
|
|
def test_data_converter(): |
|
|
|
def test_data_converter(): |
|
|
|
"""Test dataset converters.""" |
|
|
|
"""Test dataset conversion functions from COCO to YOLO format and class mappings.""" |
|
|
|
from ultralytics.data.converter import coco80_to_coco91_class, convert_coco |
|
|
|
from ultralytics.data.converter import coco80_to_coco91_class, convert_coco |
|
|
|
|
|
|
|
|
|
|
|
file = "instances_val2017.json" |
|
|
|
file = "instances_val2017.json" |
|
|
@ -300,7 +296,7 @@ def test_data_converter(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_data_annotator(): |
|
|
|
def test_data_annotator(): |
|
|
|
"""Test automatic data annotation.""" |
|
|
|
"""Automatically annotate data using specified detection and segmentation models.""" |
|
|
|
from ultralytics.data.annotator import auto_annotate |
|
|
|
from ultralytics.data.annotator import auto_annotate |
|
|
|
|
|
|
|
|
|
|
|
auto_annotate( |
|
|
|
auto_annotate( |
|
|
@ -323,7 +319,7 @@ def test_events(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_cfg_init(): |
|
|
|
def test_cfg_init(): |
|
|
|
"""Test configuration initialization utilities.""" |
|
|
|
"""Test configuration initialization utilities from the 'ultralytics.cfg' module.""" |
|
|
|
from ultralytics.cfg import check_dict_alignment, copy_default_cfg, smart_value |
|
|
|
from ultralytics.cfg import check_dict_alignment, copy_default_cfg, smart_value |
|
|
|
|
|
|
|
|
|
|
|
with contextlib.suppress(SyntaxError): |
|
|
|
with contextlib.suppress(SyntaxError): |
|
|
@ -334,7 +330,7 @@ def test_cfg_init(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_utils_init(): |
|
|
|
def test_utils_init(): |
|
|
|
"""Test initialization utilities.""" |
|
|
|
"""Test initialization utilities in the Ultralytics library.""" |
|
|
|
from ultralytics.utils import get_git_branch, get_git_origin_url, get_ubuntu_version, is_github_action_running |
|
|
|
from ultralytics.utils import get_git_branch, get_git_origin_url, get_ubuntu_version, is_github_action_running |
|
|
|
|
|
|
|
|
|
|
|
get_ubuntu_version() |
|
|
|
get_ubuntu_version() |
|
|
@ -344,7 +340,7 @@ def test_utils_init(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_utils_checks(): |
|
|
|
def test_utils_checks(): |
|
|
|
"""Test various utility checks.""" |
|
|
|
"""Test various utility checks for filenames, git status, requirements, image sizes, and versions.""" |
|
|
|
checks.check_yolov5u_filename("yolov5n.pt") |
|
|
|
checks.check_yolov5u_filename("yolov5n.pt") |
|
|
|
checks.git_describe(ROOT) |
|
|
|
checks.git_describe(ROOT) |
|
|
|
checks.check_requirements() # check requirements.txt |
|
|
|
checks.check_requirements() # check requirements.txt |
|
|
@ -356,14 +352,14 @@ def test_utils_checks(): |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(WINDOWS, reason="Windows profiling is extremely slow (cause unknown)") |
|
|
|
@pytest.mark.skipif(WINDOWS, reason="Windows profiling is extremely slow (cause unknown)") |
|
|
|
def test_utils_benchmarks(): |
|
|
|
def test_utils_benchmarks(): |
|
|
|
"""Test model benchmarking.""" |
|
|
|
"""Benchmark model performance using 'ProfileModels' from 'ultralytics.utils.benchmarks'.""" |
|
|
|
from ultralytics.utils.benchmarks import ProfileModels |
|
|
|
from ultralytics.utils.benchmarks import ProfileModels |
|
|
|
|
|
|
|
|
|
|
|
ProfileModels(["yolov8n.yaml"], imgsz=32, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile() |
|
|
|
ProfileModels(["yolov8n.yaml"], imgsz=32, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_utils_torchutils(): |
|
|
|
def test_utils_torchutils(): |
|
|
|
"""Test Torch utility functions.""" |
|
|
|
"""Test Torch utility functions including profiling and FLOP calculations.""" |
|
|
|
from ultralytics.nn.modules.conv import Conv |
|
|
|
from ultralytics.nn.modules.conv import Conv |
|
|
|
from ultralytics.utils.torch_utils import get_flops_with_torch_profiler, profile, time_sync |
|
|
|
from ultralytics.utils.torch_utils import get_flops_with_torch_profiler, profile, time_sync |
|
|
|
|
|
|
|
|
|
|
@ -378,14 +374,14 @@ def test_utils_torchutils(): |
|
|
|
@pytest.mark.slow |
|
|
|
@pytest.mark.slow |
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
|
|
def test_utils_downloads(): |
|
|
|
def test_utils_downloads(): |
|
|
|
"""Test file download utilities.""" |
|
|
|
"""Test file download utilities from ultralytics.utils.downloads.""" |
|
|
|
from ultralytics.utils.downloads import get_google_drive_file_info |
|
|
|
from ultralytics.utils.downloads import get_google_drive_file_info |
|
|
|
|
|
|
|
|
|
|
|
get_google_drive_file_info("https://drive.google.com/file/d/1cqT-cJgANNrhIHCrEufUYhQ4RqiWG_lJ/view?usp=drive_link") |
|
|
|
get_google_drive_file_info("https://drive.google.com/file/d/1cqT-cJgANNrhIHCrEufUYhQ4RqiWG_lJ/view?usp=drive_link") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_utils_ops(): |
|
|
|
def test_utils_ops(): |
|
|
|
"""Test various operations utilities.""" |
|
|
|
"""Test utility operations functions for coordinate transformation and normalization.""" |
|
|
|
from ultralytics.utils.ops import ( |
|
|
|
from ultralytics.utils.ops import ( |
|
|
|
ltwh2xywh, |
|
|
|
ltwh2xywh, |
|
|
|
ltwh2xyxy, |
|
|
|
ltwh2xyxy, |
|
|
@ -414,7 +410,7 @@ def test_utils_ops(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_utils_files(): |
|
|
|
def test_utils_files(): |
|
|
|
"""Test file handling utilities.""" |
|
|
|
"""Test file handling utilities including file age, date, and paths with spaces.""" |
|
|
|
from ultralytics.utils.files import file_age, file_date, get_latest_run, spaces_in_path |
|
|
|
from ultralytics.utils.files import file_age, file_date, get_latest_run, spaces_in_path |
|
|
|
|
|
|
|
|
|
|
|
file_age(SOURCE) |
|
|
|
file_age(SOURCE) |
|
|
@ -429,7 +425,7 @@ def test_utils_files(): |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow |
|
|
|
@pytest.mark.slow |
|
|
|
def test_utils_patches_torch_save(): |
|
|
|
def test_utils_patches_torch_save(): |
|
|
|
"""Test torch_save backoff when _torch_save throws RuntimeError.""" |
|
|
|
"""Test torch_save backoff when _torch_save raises RuntimeError to ensure robustness.""" |
|
|
|
from unittest.mock import MagicMock, patch |
|
|
|
from unittest.mock import MagicMock, patch |
|
|
|
|
|
|
|
|
|
|
|
from ultralytics.utils.patches import torch_save |
|
|
|
from ultralytics.utils.patches import torch_save |
|
|
@ -444,7 +440,7 @@ def test_utils_patches_torch_save(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_nn_modules_conv(): |
|
|
|
def test_nn_modules_conv(): |
|
|
|
"""Test Convolutional Neural Network modules.""" |
|
|
|
"""Test Convolutional Neural Network modules including CBAM, Conv2, and ConvTranspose.""" |
|
|
|
from ultralytics.nn.modules.conv import CBAM, Conv2, ConvTranspose, DWConvTranspose2d, Focus |
|
|
|
from ultralytics.nn.modules.conv import CBAM, Conv2, ConvTranspose, DWConvTranspose2d, Focus |
|
|
|
|
|
|
|
|
|
|
|
c1, c2 = 8, 16 # input and output channels |
|
|
|
c1, c2 = 8, 16 # input and output channels |
|
|
@ -463,7 +459,7 @@ def test_nn_modules_conv(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_nn_modules_block(): |
|
|
|
def test_nn_modules_block(): |
|
|
|
"""Test Neural Network block modules.""" |
|
|
|
"""Test various blocks in neural network modules including C1, C3TR, BottleneckCSP, C3Ghost, and C3x.""" |
|
|
|
from ultralytics.nn.modules.block import C1, C3TR, BottleneckCSP, C3Ghost, C3x |
|
|
|
from ultralytics.nn.modules.block import C1, C3TR, BottleneckCSP, C3Ghost, C3x |
|
|
|
|
|
|
|
|
|
|
|
c1, c2 = 8, 16 # input and output channels |
|
|
|
c1, c2 = 8, 16 # input and output channels |
|
|
@ -479,7 +475,7 @@ def test_nn_modules_block(): |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
|
|
def test_hub(): |
|
|
|
def test_hub(): |
|
|
|
"""Test Ultralytics HUB functionalities.""" |
|
|
|
"""Test Ultralytics HUB functionalities (e.g. export formats, logout).""" |
|
|
|
from ultralytics.hub import export_fmts_hub, logout |
|
|
|
from ultralytics.hub import export_fmts_hub, logout |
|
|
|
from ultralytics.hub.utils import smart_request |
|
|
|
from ultralytics.hub.utils import smart_request |
|
|
|
|
|
|
|
|
|
|
@ -490,7 +486,7 @@ def test_hub(): |
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture |
|
|
|
@pytest.fixture |
|
|
|
def image(): |
|
|
|
def image(): |
|
|
|
"""Loads an image from a predefined source using OpenCV.""" |
|
|
|
"""Load and return an image from a predefined source using OpenCV.""" |
|
|
|
return cv2.imread(str(SOURCE)) |
|
|
|
return cv2.imread(str(SOURCE)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -504,7 +500,7 @@ def image(): |
|
|
|
], |
|
|
|
], |
|
|
|
) |
|
|
|
) |
|
|
|
def test_classify_transforms_train(image, auto_augment, erasing, force_color_jitter): |
|
|
|
def test_classify_transforms_train(image, auto_augment, erasing, force_color_jitter): |
|
|
|
"""Tests classification transforms during training with various augmentation settings.""" |
|
|
|
"""Tests classification transforms during training with various augmentations to ensure proper functionality.""" |
|
|
|
from ultralytics.data.augment import classify_augmentations |
|
|
|
from ultralytics.data.augment import classify_augmentations |
|
|
|
|
|
|
|
|
|
|
|
transform = classify_augmentations( |
|
|
|
transform = classify_augmentations( |
|
|
@ -533,7 +529,7 @@ def test_classify_transforms_train(image, auto_augment, erasing, force_color_jit |
|
|
|
@pytest.mark.slow |
|
|
|
@pytest.mark.slow |
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
|
|
def test_model_tune(): |
|
|
|
def test_model_tune(): |
|
|
|
"""Tune YOLO model for performance.""" |
|
|
|
"""Tune YOLO model for performance improvement.""" |
|
|
|
YOLO("yolov8n-pose.pt").tune(data="coco8-pose.yaml", plots=False, imgsz=32, epochs=1, iterations=2, device="cpu") |
|
|
|
YOLO("yolov8n-pose.pt").tune(data="coco8-pose.yaml", plots=False, imgsz=32, epochs=1, iterations=2, device="cpu") |
|
|
|
YOLO("yolov8n-cls.pt").tune(data="imagenet10", plots=False, imgsz=32, epochs=1, iterations=2, device="cpu") |
|
|
|
YOLO("yolov8n-cls.pt").tune(data="imagenet10", plots=False, imgsz=32, epochs=1, iterations=2, device="cpu") |
|
|
|
|
|
|
|
|
|
|
@ -550,7 +546,7 @@ def test_model_embeddings(): |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="YOLOWorld with CLIP is not supported in Python 3.12") |
|
|
|
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="YOLOWorld with CLIP is not supported in Python 3.12") |
|
|
|
def test_yolo_world(): |
|
|
|
def test_yolo_world(): |
|
|
|
"""Tests YOLO world models with different configurations, including classes, detection, and training scenarios.""" |
|
|
|
"""Tests YOLO world models with CLIP support, including detection and training scenarios.""" |
|
|
|
model = YOLO("yolov8s-world.pt") # no YOLOv8n-world model yet |
|
|
|
model = YOLO("yolov8s-world.pt") # no YOLOv8n-world model yet |
|
|
|
model.set_classes(["tree", "window"]) |
|
|
|
model.set_classes(["tree", "window"]) |
|
|
|
model(SOURCE, conf=0.01) |
|
|
|
model(SOURCE, conf=0.01) |
|
|
@ -581,7 +577,7 @@ def test_yolo_world(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_yolov10(): |
|
|
|
def test_yolov10(): |
|
|
|
"""A simple test for yolov10 for now.""" |
|
|
|
"""Test YOLOv10 model training, validation, and prediction steps with minimal configurations.""" |
|
|
|
model = YOLO("yolov10n.yaml") |
|
|
|
model = YOLO("yolov10n.yaml") |
|
|
|
# train/val/predict |
|
|
|
# train/val/predict |
|
|
|
model.train(data="coco8.yaml", epochs=1, imgsz=32, close_mosaic=1, cache="disk") |
|
|
|
model.train(data="coco8.yaml", epochs=1, imgsz=32, close_mosaic=1, cache="disk") |
|
|
|