`ultralytics 8.0.161` fix Classify dataset scanning bug (#4515)

pull/4517/head v8.0.161
Glenn Jocher 1 year ago committed by GitHub
parent 3c40e7a9fc
commit 67eeb0468d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      ultralytics/__init__.py
  2. 8
      ultralytics/data/dataset.py
  3. 23
      ultralytics/data/utils.py
  4. 14
      ultralytics/utils/downloads.py

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = '8.0.160'
__version__ = '8.0.161'
from ultralytics.models import RTDETR, SAM, YOLO
from ultralytics.models.fastsam import FastSAM

@ -17,7 +17,7 @@ from .base import BaseDataset
from .utils import HELP_URL, LOGGER, get_hash, img2label_paths, verify_image, verify_image_label
# Ultralytics dataset *.cache version, >= 1.0.0 for YOLOv8
DATASET_CACHE_VERSION = '1.0.2'
DATASET_CACHE_VERSION = '1.0.3'
class YOLODataset(BaseDataset):
@ -279,11 +279,11 @@ class ClassificationDataset(torchvision.datasets.ImageFolder):
# Run scan if *.cache retrieval failed
nf, nc, msgs, samples, x = 0, 0, [], [], {}
with ThreadPool(NUM_THREADS) as pool:
results = pool.imap(func=verify_image, iterable=zip([x[0] for x in self.samples], repeat(self.prefix)))
results = pool.imap(func=verify_image, iterable=zip(self.samples, repeat(self.prefix)))
pbar = tqdm(results, desc=desc, total=len(self.samples), bar_format=TQDM_BAR_FORMAT)
for im_file, nf_f, nc_f, msg in pbar:
for sample, nf_f, nc_f, msg in pbar:
if nf_f:
samples.append((im_file, nf))
samples.append(sample)
if msg:
msgs.append(msg)
nf += nf_f

@ -59,7 +59,7 @@ def exif_size(img: Image.Image):
def verify_image(args):
"""Verify one image."""
im_file, prefix = args
(im_file, cls), prefix = args
# Number (found, corrupt), message
nf, nc, msg = 0, 0, ''
try:
@ -79,7 +79,7 @@ def verify_image(args):
except Exception as e:
nc = 1
msg = f'{prefix}WARNING ⚠ {im_file}: ignoring corrupt image/label: {e}'
return im_file, nf, nc, msg
return (im_file, cls), nf, nc, msg
def verify_image_label(args):
@ -321,7 +321,7 @@ def check_cls_dataset(dataset: str, split=''):
dataset = Path(dataset)
data_dir = (dataset if dataset.is_dir() else (DATASETS_DIR / dataset)).resolve()
if not data_dir.is_dir():
LOGGER.info(f'\nDataset not found ⚠, missing path {data_dir}, attempting download...')
LOGGER.warning(f'\nDataset not found ⚠, missing path {data_dir}, attempting download...')
t = time.time()
if str(dataset) == 'imagenet':
subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
@ -335,9 +335,9 @@ def check_cls_dataset(dataset: str, split=''):
data_dir / 'validation').exists() else None # data/test or data/val
test_set = data_dir / 'test' if (data_dir / 'test').exists() else None # data/val or data/test
if split == 'val' and not val_set:
LOGGER.info("WARNING ⚠ Dataset 'split=val' not found, using 'split=test' instead.")
LOGGER.warning("WARNING ⚠ Dataset 'split=val' not found, using 'split=test' instead.")
elif split == 'test' and not test_set:
LOGGER.info("WARNING ⚠ Dataset 'split=test' not found, using 'split=val' instead.")
LOGGER.warning("WARNING ⚠ Dataset 'split=test' not found, using 'split=val' instead.")
nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes
names = [x.name for x in (data_dir / 'train').iterdir() if x.is_dir()] # class names list
@ -345,13 +345,22 @@ def check_cls_dataset(dataset: str, split=''):
# Print to console
for k, v in {'train': train_set, 'val': val_set, 'test': test_set}.items():
prefix = f'{colorstr(k)} {v}...'
if v is None:
LOGGER.info(f'{colorstr(k)}: {v}')
LOGGER.info(prefix)
else:
files = [path for path in v.rglob('*.*') if path.suffix[1:].lower() in IMG_FORMATS]
nf = len(files) # number of files
nd = len({file.parent for file in files}) # number of directories
LOGGER.info(f'{colorstr(k)}: {v}... found {nf} images in {nd} classes ✅ ') # keep trailing space
if nf == 0:
if k == 'train':
raise FileNotFoundError(emojis(f"{dataset} '{k}:' no training images found ❌ "))
else:
LOGGER.warning(f'{prefix} found {nf} images in {nd} classes: WARNING ⚠ no images found')
elif nd != nc:
LOGGER.warning(f'{prefix} found {nf} images in {nd} classes: ERROR ❌ requires {nc} classes, not {nd}')
else:
LOGGER.info(f'{prefix} found {nf} images in {nd} classes ✅ ')
return {'train': train_set, 'val': val_set or test_set, 'test': test_set or val_set, 'nc': nc, 'names': names}

@ -39,16 +39,17 @@ def is_url(url, check=True):
return False
def delete_dsstore(path):
def delete_dsstore(path, files_to_delete=('.DS_Store', '__MACOSX')):
"""
Deletes all ".DS_store" files under a specified directory.
Args:
path (str, optional): The directory path where the ".DS_store" files should be deleted.
files_to_delete (tuple): The files to be deleted.
Example:
```python
from ultralytics.data.utils import delete_dsstore
from ultralytics.utils.downloads import delete_dsstore
delete_dsstore('path/to/dir')
```
@ -58,10 +59,11 @@ def delete_dsstore(path):
are hidden system files and can cause issues when transferring files between different operating systems.
"""
# Delete Apple .DS_store files
files = list(Path(path).rglob('.DS_store'))
LOGGER.info(f'Deleting *.DS_store files: {files}')
for f in files:
f.unlink()
for file in files_to_delete:
matches = list(Path(path).rglob(file))
LOGGER.info(f'Deleting {file} files: {matches}')
for f in matches:
f.unlink()
def zip_directory(directory, compress=True, exclude=('.DS_Store', '__MACOSX'), progress=True):

Loading…
Cancel
Save