|
|
|
@ -794,7 +794,106 @@ class LetterBox: |
|
|
|
|
return labels |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CopyPaste: |
|
|
|
|
class CopyPaste(BaseMixTransform): |
|
|
|
|
""" |
|
|
|
|
Implements Copy-Paste augmentation as described in https://arxiv.org/abs/2012.07177. |
|
|
|
|
|
|
|
|
|
This class applies Copy-Paste augmentation on images and their corresponding instances. |
|
|
|
|
|
|
|
|
|
Attributes: |
|
|
|
|
dataset: The dataset on which the copypaste augmentation is applied. |
|
|
|
|
pre_transform: The pre-transforms for the mixed labels. |
|
|
|
|
p (float): Probability of applying the Copy-Paste augmentation. Must be between 0 and 1. |
|
|
|
|
|
|
|
|
|
Methods: |
|
|
|
|
__call__: Applies Copy-Paste augmentation to given image and instances. |
|
|
|
|
|
|
|
|
|
Examples: |
|
|
|
|
>>> copypaste = CopyPaste(dataset, p=0.5) |
|
|
|
|
>>> augmented_labels = copypaste(labels) |
|
|
|
|
>>> augmented_image = augmented_labels['img'] |
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
def __init__(self, dataset, pre_transform=None, p=0.5) -> None: |
|
|
|
|
"""Initializes CopyPaste object with dataset, pre_transform, and probability of applying MixUp.""" |
|
|
|
|
super().__init__(dataset=dataset, pre_transform=pre_transform, p=p) |
|
|
|
|
|
|
|
|
|
def get_indexes(self): |
|
|
|
|
""" |
|
|
|
|
Get a random index from the dataset. |
|
|
|
|
|
|
|
|
|
This method returns a single random index from the dataset, which is used to select an image for MixUp |
|
|
|
|
augmentation. |
|
|
|
|
|
|
|
|
|
Returns: |
|
|
|
|
(int): A random integer index within the range of the dataset length. |
|
|
|
|
|
|
|
|
|
Examples: |
|
|
|
|
>>> copypaste = CopyPaste(dataset) |
|
|
|
|
>>> index = copypaste.get_indexes() |
|
|
|
|
>>> print(index) |
|
|
|
|
42 |
|
|
|
|
""" |
|
|
|
|
return random.randint(0, len(self.dataset) - 1) |
|
|
|
|
|
|
|
|
|
def _mix_transform(self, labels): |
|
|
|
|
"""Applies CopyPaste augmentation.""" |
|
|
|
|
labels2 = labels["mix_labels"][0] |
|
|
|
|
im = labels["img"] |
|
|
|
|
cls = labels["cls"] |
|
|
|
|
h, w = im.shape[:2] |
|
|
|
|
instances = labels.pop("instances") |
|
|
|
|
instances.convert_bbox(format="xyxy") |
|
|
|
|
instances.denormalize(w, h) |
|
|
|
|
|
|
|
|
|
im_new = np.zeros(im.shape, np.uint8) |
|
|
|
|
instances2 = labels2.pop("instances") |
|
|
|
|
ioa = bbox_ioa(instances2.bboxes, instances.bboxes) # intersection over area, (N, M) |
|
|
|
|
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, ) |
|
|
|
|
n = len(indexes) |
|
|
|
|
# for j in random.sample(list(indexes), k=round(self.p * n)): |
|
|
|
|
sorted_idx = np.argsort(ioa.max(1)[indexes]) |
|
|
|
|
indexes = indexes[sorted_idx] |
|
|
|
|
for j in indexes[: round(self.p * n)]: |
|
|
|
|
cls = np.concatenate((cls, labels2["cls"][[j]]), axis=0) |
|
|
|
|
instances = Instances.concatenate((instances, instances2[[j]]), axis=0) |
|
|
|
|
cv2.drawContours(im_new, instances2.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED) |
|
|
|
|
|
|
|
|
|
result = labels2["img"] # augment segments |
|
|
|
|
i = im_new.astype(bool) |
|
|
|
|
im[i] = result[i] |
|
|
|
|
|
|
|
|
|
labels["img"] = im |
|
|
|
|
labels["cls"] = cls |
|
|
|
|
labels["instances"] = instances |
|
|
|
|
return labels |
|
|
|
|
|
|
|
|
|
def __call__(self, labels): |
|
|
|
|
"""Applies pre-processing transforms and copy_paste transforms to labels data.""" |
|
|
|
|
if len(labels["instances"].segments) == 0 or self.p == 0: |
|
|
|
|
return labels |
|
|
|
|
# Get index of one or three other images |
|
|
|
|
indexes = self.get_indexes() |
|
|
|
|
if isinstance(indexes, int): |
|
|
|
|
indexes = [indexes] |
|
|
|
|
|
|
|
|
|
# Get images information will be used for Mosaic or MixUp |
|
|
|
|
mix_labels = [self.dataset.get_image_and_label(i) for i in indexes] |
|
|
|
|
|
|
|
|
|
if self.pre_transform is not None: |
|
|
|
|
for i, data in enumerate(mix_labels): |
|
|
|
|
mix_labels[i] = self.pre_transform(data) |
|
|
|
|
labels["mix_labels"] = mix_labels |
|
|
|
|
|
|
|
|
|
# Update cls and texts |
|
|
|
|
labels = self._update_label_text(labels) |
|
|
|
|
# Mosaic or MixUp |
|
|
|
|
labels = self._mix_transform(labels) |
|
|
|
|
labels.pop("mix_labels", None) |
|
|
|
|
return labels |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class OldCopyPaste: |
|
|
|
|
""" |
|
|
|
|
Implements the Copy-Paste augmentation as described in the paper https://arxiv.org/abs/2012.07177. This class is |
|
|
|
|
responsible for applying the Copy-Paste augmentation on images and their corresponding instances. |
|
|
|
@ -848,7 +947,7 @@ class CopyPaste: |
|
|
|
|
# for j in random.sample(list(indexes), k=round(self.p * n)): |
|
|
|
|
sorted_idx = np.argsort(ioa.max(1)[indexes]) |
|
|
|
|
indexes = indexes[sorted_idx] |
|
|
|
|
for j in indexes[:round(self.p * n)]: |
|
|
|
|
for j in indexes[: round(self.p * n)]: |
|
|
|
|
cls = np.concatenate((cls, cls[[j]]), axis=0) |
|
|
|
|
instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0) |
|
|
|
|
cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED) |
|
|
|
@ -1096,18 +1195,22 @@ class RandomLoadText: |
|
|
|
|
|
|
|
|
|
def v8_transforms(dataset, imgsz, hyp, stretch=False): |
|
|
|
|
"""Convert images to a size suitable for YOLOv8 training.""" |
|
|
|
|
mosaic = Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic) |
|
|
|
|
affine = RandomPerspective( |
|
|
|
|
degrees=hyp.degrees, |
|
|
|
|
translate=hyp.translate, |
|
|
|
|
scale=hyp.scale, |
|
|
|
|
shear=hyp.shear, |
|
|
|
|
perspective=hyp.perspective, |
|
|
|
|
pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)), |
|
|
|
|
) |
|
|
|
|
pre_transform = Compose( |
|
|
|
|
[ |
|
|
|
|
Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic), |
|
|
|
|
CopyPaste(p=hyp.copy_paste), |
|
|
|
|
RandomPerspective( |
|
|
|
|
degrees=hyp.degrees, |
|
|
|
|
translate=hyp.translate, |
|
|
|
|
scale=hyp.scale, |
|
|
|
|
shear=hyp.shear, |
|
|
|
|
perspective=hyp.perspective, |
|
|
|
|
pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)), |
|
|
|
|
), |
|
|
|
|
mosaic, |
|
|
|
|
# CopyPaste(dataset, pre_transform=mosaic, p=hyp.copy_paste), |
|
|
|
|
# OldCopyPaste(p=hyp.copy_paste), |
|
|
|
|
affine, |
|
|
|
|
CopyPaste(dataset, pre_transform=Compose([mosaic, affine]), p=hyp.copy_paste), |
|
|
|
|
] |
|
|
|
|
) |
|
|
|
|
flip_idx = dataset.data.get("flip_idx", []) # for keypoints augmentation |
|
|
|
|