YAML reformat (#7669)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/7674/head
Glenn Jocher 10 months ago committed by GitHub
parent d021524e85
commit 63e7db1dac
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 41
      .github/workflows/ci.yaml
  2. 8
      .github/workflows/cla.yml
  3. 4
      .github/workflows/codeql.yaml
  4. 8
      .github/workflows/docker.yaml
  5. 2
      .github/workflows/format.yml
  6. 2
      .github/workflows/links.yml
  7. 4
      .github/workflows/publish.yml
  8. 6
      .github/workflows/stale.yml
  9. 6
      .pre-commit-config.yaml
  10. 10
      ultralytics/cfg/datasets/Argoverse.yaml
  11. 8
      ultralytics/cfg/datasets/DOTAv1.5.yaml
  12. 8
      ultralytics/cfg/datasets/DOTAv1.yaml
  13. 4
      ultralytics/cfg/datasets/GlobalWheat2020.yaml
  14. 10
      ultralytics/cfg/datasets/ImageNet.yaml
  15. 8
      ultralytics/cfg/datasets/Objects365.yaml
  16. 10
      ultralytics/cfg/datasets/SKU-110K.yaml
  17. 2
      ultralytics/cfg/datasets/VOC.yaml
  18. 10
      ultralytics/cfg/datasets/VisDrone.yaml
  19. 11
      ultralytics/cfg/datasets/coco-pose.yaml
  20. 10
      ultralytics/cfg/datasets/coco.yaml
  21. 10
      ultralytics/cfg/datasets/coco128-seg.yaml
  22. 10
      ultralytics/cfg/datasets/coco128.yaml
  23. 11
      ultralytics/cfg/datasets/coco8-pose.yaml
  24. 10
      ultralytics/cfg/datasets/coco8-seg.yaml
  25. 10
      ultralytics/cfg/datasets/coco8.yaml
  26. 6
      ultralytics/cfg/datasets/dota8.yaml
  27. 10
      ultralytics/cfg/datasets/open-images-v7.yaml
  28. 9
      ultralytics/cfg/datasets/tiger-pose.yaml
  29. 8
      ultralytics/cfg/datasets/xView.yaml
  30. 206
      ultralytics/cfg/default.yaml
  31. 54
      ultralytics/cfg/models/rt-detr/rtdetr-l.yaml
  32. 46
      ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml
  33. 46
      ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml
  34. 54
      ultralytics/cfg/models/rt-detr/rtdetr-x.yaml
  35. 36
      ultralytics/cfg/models/v3/yolov3-spp.yaml
  36. 32
      ultralytics/cfg/models/v3/yolov3-tiny.yaml
  37. 36
      ultralytics/cfg/models/v3/yolov3.yaml
  38. 48
      ultralytics/cfg/models/v5/yolov5-p6.yaml
  39. 37
      ultralytics/cfg/models/v5/yolov5.yaml
  40. 34
      ultralytics/cfg/models/v6/yolov6.yaml
  41. 14
      ultralytics/cfg/models/v8/yolov8-cls.yaml
  42. 52
      ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml
  43. 54
      ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml
  44. 46
      ultralytics/cfg/models/v8/yolov8-ghost.yaml
  45. 46
      ultralytics/cfg/models/v8/yolov8-obb.yaml
  46. 46
      ultralytics/cfg/models/v8/yolov8-p2.yaml
  47. 48
      ultralytics/cfg/models/v8/yolov8-p6.yaml
  48. 50
      ultralytics/cfg/models/v8/yolov8-pose-p6.yaml
  49. 38
      ultralytics/cfg/models/v8/yolov8-pose.yaml
  50. 46
      ultralytics/cfg/models/v8/yolov8-rtdetr.yaml
  51. 48
      ultralytics/cfg/models/v8/yolov8-seg-p6.yaml
  52. 36
      ultralytics/cfg/models/v8/yolov8-seg.yaml
  53. 46
      ultralytics/cfg/models/v8/yolov8.yaml
  54. 14
      ultralytics/cfg/trackers/botsort.yaml
  55. 12
      ultralytics/cfg/trackers/bytetrack.yaml

@ -9,27 +9,27 @@ on:
pull_request:
branches: [main]
schedule:
- cron: '0 0 * * *' # runs at 00:00 UTC every day
- cron: "0 0 * * *" # runs at 00:00 UTC every day
workflow_dispatch:
inputs:
hub:
description: 'Run HUB'
description: "Run HUB"
default: false
type: boolean
benchmarks:
description: 'Run Benchmarks'
description: "Run Benchmarks"
default: false
type: boolean
tests:
description: 'Run Tests'
description: "Run Tests"
default: false
type: boolean
gpu:
description: 'Run GPU'
description: "Run GPU"
default: false
type: boolean
conda:
description: 'Run Conda'
description: "Run Conda"
default: false
type: boolean
@ -41,15 +41,15 @@ jobs:
fail-fast: false
matrix:
os: [ubuntu-latest]
python-version: ['3.11']
python-version: ["3.11"]
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: 'pip' # caching pip dependencies
cache: "pip" # caching pip dependencies
- name: Install requirements
shell: bash # for Windows compatibility
shell: bash # for Windows compatibility
run: |
python -m pip install --upgrade pip wheel
pip install -e . --extra-index-url https://download.pytorch.org/whl/cpu
@ -95,16 +95,16 @@ jobs:
fail-fast: false
matrix:
os: [ubuntu-latest]
python-version: ['3.11']
python-version: ["3.11"]
model: [yolov8n]
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: 'pip' # caching pip dependencies
cache: "pip" # caching pip dependencies
- name: Install requirements
shell: bash # for Windows compatibility
shell: bash # for Windows compatibility
run: |
python -m pip install --upgrade pip wheel
pip install -e ".[export]" "coverage[toml]" --extra-index-url https://download.pytorch.org/whl/cpu
@ -150,21 +150,22 @@ jobs:
fail-fast: false
matrix:
os: [ubuntu-latest]
python-version: ['3.11']
python-version: ["3.11"]
torch: [latest]
include:
- os: ubuntu-latest
python-version: '3.8' # torch 1.8.0 requires python >=3.6, <=3.8
torch: '1.8.0' # min torch version CI https://pypi.org/project/torchvision/
python-version: "3.8" # torch 1.8.0 requires python >=3.6, <=3.8
torch: "1.8.0" # min torch version CI https://pypi.org/project/torchvision/
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: 'pip' # caching pip dependencies
cache: "pip" # caching pip dependencies
- name: Install requirements
shell: bash # for Windows compatibility
run: | # CoreML must be installed before export due to protobuf error from AutoInstall
shell: bash # for Windows compatibility
run: |
# CoreML must be installed before export due to protobuf error from AutoInstall
python -m pip install --upgrade pip wheel
torch=""
if [ "${{ matrix.torch }}" == "1.8.0" ]; then
@ -176,7 +177,7 @@ jobs:
yolo checks
pip list
- name: Pytest tests
shell: bash # for Windows compatibility
shell: bash # for Windows compatibility
run: |
slow=""
if [[ "${{ github.event_name }}" == "schedule" ]] || [[ "${{ github.event_name }}" == "workflow_dispatch" ]]; then
@ -220,7 +221,7 @@ jobs:
fail-fast: false
matrix:
os: [ubuntu-latest]
python-version: ['3.11']
python-version: ["3.11"]
defaults:
run:
shell: bash -el {0}

@ -24,14 +24,14 @@ jobs:
# must be repository secret token
PERSONAL_ACCESS_TOKEN: ${{ secrets.PERSONAL_ACCESS_TOKEN }}
with:
path-to-signatures: 'signatures/version1/cla.json'
path-to-document: 'https://docs.ultralytics.com/help/CLA' # CLA document
path-to-signatures: "signatures/version1/cla.json"
path-to-document: "https://docs.ultralytics.com/help/CLA" # CLA document
# branch should not be protected
branch: 'main'
branch: "main"
allowlist: dependabot[bot],github-actions,[pre-commit*,pre-commit*,bot*
remote-organization-name: ultralytics
remote-repository-name: cla
custom-pr-sign-comment: 'I have read the CLA Document and I sign the CLA'
custom-pr-sign-comment: "I have read the CLA Document and I sign the CLA"
custom-allsigned-prcomment: All Contributors have signed the CLA. ✅
#custom-notsigned-prcomment: 'pull request comment with Introductory message to ask new contributors to sign'

@ -4,7 +4,7 @@ name: "CodeQL"
on:
schedule:
- cron: '0 0 1 * *'
- cron: "0 0 1 * *"
workflow_dispatch:
jobs:
@ -19,7 +19,7 @@ jobs:
strategy:
fail-fast: false
matrix:
language: ['python']
language: ["python"]
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python', 'ruby' ]
steps:

@ -64,7 +64,7 @@ jobs:
- name: Checkout repo
uses: actions/checkout@v4
with:
fetch-depth: 0 # copy full .git directory to access full git history in Docker images
fetch-depth: 0 # copy full .git directory to access full git history in Docker images
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
@ -115,12 +115,12 @@ jobs:
-t ultralytics/ultralytics:${{ steps.get_version.outputs.version_tag }} .
- name: Run Tests
if: (github.event_name == 'push' || github.event.inputs[matrix.dockerfile] == 'true') && matrix.platforms == 'linux/amd64' && matrix.dockerfile != 'Dockerfile-conda' # arm64 images not supported on GitHub CI runners
if: (github.event_name == 'push' || github.event.inputs[matrix.dockerfile] == 'true') && matrix.platforms == 'linux/amd64' && matrix.dockerfile != 'Dockerfile-conda' # arm64 images not supported on GitHub CI runners
run: docker run ultralytics/ultralytics:${{ matrix.tags }} /bin/bash -c "pip install pytest && pytest tests"
- name: Run Benchmarks
# WARNING: Dockerfile (GPU) error on TF.js export 'module 'numpy' has no attribute 'object'.
if: (github.event_name == 'push' || github.event.inputs[matrix.dockerfile] == 'true') && matrix.platforms == 'linux/amd64' && matrix.dockerfile != 'Dockerfile' && matrix.dockerfile != 'Dockerfile-conda' # arm64 images not supported on GitHub CI runners
if: (github.event_name == 'push' || github.event.inputs[matrix.dockerfile] == 'true') && matrix.platforms == 'linux/amd64' && matrix.dockerfile != 'Dockerfile' && matrix.dockerfile != 'Dockerfile-conda' # arm64 images not supported on GitHub CI runners
run: docker run ultralytics/ultralytics:${{ matrix.tags }} yolo benchmark model=yolov8n.pt imgsz=160 verbose=0.318
- name: Push Docker Image with Ultralytics version tag
@ -139,7 +139,7 @@ jobs:
fi
- name: Notify on failure
if: github.event_name == 'push' && failure() # do not notify on cancelled() as cancelling is performed by hand
if: github.event_name == 'push' && failure() # do not notify on cancelled() as cancelling is performed by hand
uses: slackapi/slack-github-action@v1.24.0
with:
payload: |

@ -17,7 +17,7 @@ jobs:
- name: Run Ultralytics Formatting
uses: ultralytics/actions@main
with:
token: ${{ secrets.GITHUB_TOKEN }} # automatically generated
token: ${{ secrets.GITHUB_TOKEN }} # automatically generated
python: true
docstrings: true
markdown: true

@ -12,7 +12,7 @@ name: Check Broken links
on:
workflow_dispatch:
schedule:
- cron: '0 0 * * *' # runs at 00:00 UTC every day
- cron: "0 0 * * *" # runs at 00:00 UTC every day
jobs:
Links:

@ -28,8 +28,8 @@ jobs:
- name: Set up Python environment
uses: actions/setup-python@v5
with:
python-version: '3.11'
cache: 'pip' # caching pip dependencies
python-version: "3.11"
cache: "pip" # caching pip dependencies
- name: Install dependencies
run: |
python -m pip install --upgrade pip wheel build twine

@ -3,7 +3,7 @@
name: Close stale issues
on:
schedule:
- cron: '0 0 * * *' # Runs at 00:00 UTC every day
- cron: "0 0 * * *" # Runs at 00:00 UTC every day
jobs:
stale:
@ -43,5 +43,5 @@ jobs:
days-before-issue-close: 10
days-before-pr-stale: 90
days-before-pr-close: 30
exempt-issue-labels: 'documentation,tutorial,TODO'
operations-per-run: 300 # The maximum number of operations per run, used to control rate limiting.
exempt-issue-labels: "documentation,tutorial,TODO"
operations-per-run: 300 # The maximum number of operations per run, used to control rate limiting.

@ -5,7 +5,7 @@
# Define bot property if installed via https://github.com/marketplace/pre-commit-ci
ci:
autofix_prs: true
autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
autoupdate_commit_msg: "[pre-commit.ci] pre-commit suggestions"
autoupdate_schedule: monthly
submodules: true
@ -55,7 +55,7 @@ repos:
rev: v2.2.6
hooks:
- id: codespell
exclude: 'docs/de|docs/fr|docs/pt|docs/es|docs/mkdocs_de.yml'
exclude: "docs/de|docs/fr|docs/pt|docs/es|docs/mkdocs_de.yml"
args:
- --ignore-words-list=crate,nd,ned,strack,dota,ane,segway,fo,gool,winn,commend,bloc,nam,afterall
@ -64,7 +64,7 @@ repos:
hooks:
- id: pycln
args: [--all]
#
# - repo: https://github.com/PyCQA/docformatter
# rev: v1.7.5
# hooks:

@ -7,12 +7,11 @@
# └── datasets
# └── Argoverse ← downloads here (31.5 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Argoverse # dataset root dir
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
path: ../datasets/Argoverse # dataset root dir
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
# Classes
names:
@ -25,7 +24,6 @@ names:
6: traffic_light
7: stop_sign
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import json

@ -8,10 +8,10 @@
# └── dota1.5 ← downloads here (2GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/DOTAv1.5 # dataset root dir
train: images/train # train images (relative to 'path') 1411 images
val: images/val # val images (relative to 'path') 458 images
test: images/test # test images (optional) 937 images
path: ../datasets/DOTAv1.5 # dataset root dir
train: images/train # train images (relative to 'path') 1411 images
val: images/val # val images (relative to 'path') 458 images
test: images/test # test images (optional) 937 images
# Classes for DOTA 1.5
names:

@ -8,10 +8,10 @@
# └── dota1 ← downloads here (2GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/DOTAv1 # dataset root dir
train: images/train # train images (relative to 'path') 1411 images
val: images/val # val images (relative to 'path') 458 images
test: images/test # test images (optional) 937 images
path: ../datasets/DOTAv1 # dataset root dir
train: images/train # train images (relative to 'path') 1411 images
val: images/val # val images (relative to 'path') 458 images
test: images/test # test images (optional) 937 images
# Classes for DOTA 1.0
names:

@ -7,9 +7,8 @@
# └── datasets
# └── GlobalWheat2020 ← downloads here (7.0 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/GlobalWheat2020 # dataset root dir
path: ../datasets/GlobalWheat2020 # dataset root dir
train: # train images (relative to 'path') 3422 images
- images/arvalis_1
- images/arvalis_2
@ -30,7 +29,6 @@ test: # test images (optional) 1276 images
names:
0: wheat_head
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from ultralytics.utils.downloads import download

@ -8,12 +8,11 @@
# └── datasets
# └── imagenet ← downloads here (144 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/imagenet # dataset root dir
train: train # train images (relative to 'path') 1281167 images
val: val # val images (relative to 'path') 50000 images
test: # test images (optional)
path: ../datasets/imagenet # dataset root dir
train: train # train images (relative to 'path') 1281167 images
val: val # val images (relative to 'path') 50000 images
test: # test images (optional)
# Classes
names:
@ -2021,6 +2020,5 @@ map:
n13133613: ear
n15075141: toilet_tissue
# Download script/URL (optional)
download: yolo/data/scripts/get_imagenet.sh

@ -7,12 +7,11 @@
# └── datasets
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Objects365 # dataset root dir
train: images/train # train images (relative to 'path') 1742289 images
path: ../datasets/Objects365 # dataset root dir
train: images/train # train images (relative to 'path') 1742289 images
val: images/val # val images (relative to 'path') 80000 images
test: # test images (optional)
test: # test images (optional)
# Classes
names:
@ -382,7 +381,6 @@ names:
363: Curling
364: Table Tennis
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from tqdm import tqdm

@ -7,18 +7,16 @@
# └── datasets
# └── SKU-110K ← downloads here (13.6 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/SKU-110K # dataset root dir
train: train.txt # train images (relative to 'path') 8219 images
val: val.txt # val images (relative to 'path') 588 images
test: test.txt # test images (optional) 2936 images
path: ../datasets/SKU-110K # dataset root dir
train: train.txt # train images (relative to 'path') 8219 images
val: val.txt # val images (relative to 'path') 588 images
test: test.txt # test images (optional) 2936 images
# Classes
names:
0: object
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import shutil

@ -7,7 +7,6 @@
# └── datasets
# └── VOC ← downloads here (2.8 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/VOC
train: # train images (relative to 'path') 16551 images
@ -43,7 +42,6 @@ names:
18: train
19: tvmonitor
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import xml.etree.ElementTree as ET

@ -7,12 +7,11 @@
# └── datasets
# └── VisDrone ← downloads here (2.3 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/VisDrone # dataset root dir
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
path: ../datasets/VisDrone # dataset root dir
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
# Classes
names:
@ -27,7 +26,6 @@ names:
8: bus
9: motor
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import os

@ -7,15 +7,14 @@
# └── datasets
# └── coco-pose ← downloads here (20.1 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco-pose # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # val images (relative to 'path') 5000 images
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
path: ../datasets/coco-pose # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # val images (relative to 'path') 5000 images
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
# Keypoints
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
# Classes

@ -7,12 +7,11 @@
# └── datasets
# └── coco ← downloads here (20.1 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # val images (relative to 'path') 5000 images
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
path: ../datasets/coco # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # val images (relative to 'path') 5000 images
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
# Classes
names:
@ -97,7 +96,6 @@ names:
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: |
from ultralytics.utils.downloads import download

@ -7,12 +7,11 @@
# └── datasets
# └── coco128-seg ← downloads here (7 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128-seg # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)
path: ../datasets/coco128-seg # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)
# Classes
names:
@ -97,6 +96,5 @@ names:
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://ultralytics.com/assets/coco128-seg.zip

@ -7,12 +7,11 @@
# └── datasets
# └── coco128 ← downloads here (7 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128 # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)
path: ../datasets/coco128 # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)
# Classes
names:
@ -97,6 +96,5 @@ names:
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://ultralytics.com/assets/coco128.zip

@ -7,15 +7,14 @@
# └── datasets
# └── coco8-pose ← downloads here (1 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8-pose # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)
path: ../datasets/coco8-pose # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)
# Keypoints
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
# Classes

@ -7,12 +7,11 @@
# └── datasets
# └── coco8-seg ← downloads here (1 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8-seg # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)
path: ../datasets/coco8-seg # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)
# Classes
names:
@ -97,6 +96,5 @@ names:
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://ultralytics.com/assets/coco8-seg.zip

@ -7,12 +7,11 @@
# └── datasets
# └── coco8 ← downloads here (1 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8 # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)
path: ../datasets/coco8 # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)
# Classes
names:
@ -97,6 +96,5 @@ names:
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://ultralytics.com/assets/coco8.zip

@ -8,9 +8,9 @@
# └── dota8 ← downloads here (1MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/dota8 # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
path: ../datasets/dota8 # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
# Classes for DOTA 1.0
names:

@ -7,12 +7,11 @@
# └── datasets
# └── open-images-v7 ← downloads here (561 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/open-images-v7 # dataset root dir
train: images/train # train images (relative to 'path') 1743042 images
val: images/val # val images (relative to 'path') 41620 images
test: # test images (optional)
path: ../datasets/open-images-v7 # dataset root dir
train: images/train # train images (relative to 'path') 1743042 images
val: images/val # val images (relative to 'path') 41620 images
test: # test images (optional)
# Classes
names:
@ -618,7 +617,6 @@ names:
599: Zebra
600: Zucchini
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from ultralytics.utils import LOGGER, SETTINGS, Path, is_ubuntu, get_ubuntu_version

@ -7,14 +7,13 @@
# └── datasets
# └── tiger-pose ← downloads here (75.3 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/tiger-pose # dataset root dir
train: train # train images (relative to 'path') 210 images
val: val # val images (relative to 'path') 53 images
path: ../datasets/tiger-pose # dataset root dir
train: train # train images (relative to 'path') 210 images
val: val # val images (relative to 'path') 53 images
# Keypoints
kpt_shape: [12, 2] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
kpt_shape: [12, 2] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
# Classes

@ -8,11 +8,10 @@
# └── datasets
# └── xView ← downloads here (20.7 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/xView # dataset root dir
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
path: ../datasets/xView # dataset root dir
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
# Classes
names:
@ -77,7 +76,6 @@ names:
58: Pylon
59: Tower
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import json

@ -1,125 +1,125 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Default training settings and hyperparameters for medium-augmentation COCO training
task: detect # (str) YOLO task, i.e. detect, segment, classify, pose
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
task: detect # (str) YOLO task, i.e. detect, segment, classify, pose
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
# Train settings -------------------------------------------------------------------------------------------------------
model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
data: # (str, optional) path to data file, i.e. coco128.yaml
epochs: 100 # (int) number of epochs to train for
time: # (float, optional) number of hours to train for, overrides epochs if supplied
patience: 50 # (int) epochs to wait for no observable improvement for early stopping of training
batch: 16 # (int) number of images per batch (-1 for AutoBatch)
imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes
save: True # (bool) save train checkpoints and predict results
model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
data: # (str, optional) path to data file, i.e. coco128.yaml
epochs: 100 # (int) number of epochs to train for
time: # (float, optional) number of hours to train for, overrides epochs if supplied
patience: 50 # (int) epochs to wait for no observable improvement for early stopping of training
batch: 16 # (int) number of images per batch (-1 for AutoBatch)
imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes
save: True # (bool) save train checkpoints and predict results
save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
cache: False # (bool) True/ram, disk or False. Use cache for data loading
device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)
project: # (str, optional) project name
name: # (str, optional) experiment name, results saved to 'project/name' directory
exist_ok: False # (bool) whether to overwrite existing experiment
pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
verbose: True # (bool) whether to print verbose output
seed: 0 # (int) random seed for reproducibility
deterministic: True # (bool) whether to enable deterministic mode
single_cls: False # (bool) train multi-class data as single-class
rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
cos_lr: False # (bool) use cosine learning rate scheduler
close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable)
resume: False # (bool) resume training from last checkpoint
amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
multi_scale: False # (bool) Whether to use multi-scale during training
cache: False # (bool) True/ram, disk or False. Use cache for data loading
device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)
project: # (str, optional) project name
name: # (str, optional) experiment name, results saved to 'project/name' directory
exist_ok: False # (bool) whether to overwrite existing experiment
pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
verbose: True # (bool) whether to print verbose output
seed: 0 # (int) random seed for reproducibility
deterministic: True # (bool) whether to enable deterministic mode
single_cls: False # (bool) train multi-class data as single-class
rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
cos_lr: False # (bool) use cosine learning rate scheduler
close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable)
resume: False # (bool) resume training from last checkpoint
amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
multi_scale: False # (bool) Whether to use multi-scale during training
# Segmentation
overlap_mask: True # (bool) masks should overlap during training (segment train only)
mask_ratio: 4 # (int) mask downsample ratio (segment train only)
overlap_mask: True # (bool) masks should overlap during training (segment train only)
mask_ratio: 4 # (int) mask downsample ratio (segment train only)
# Classification
dropout: 0.0 # (float) use dropout regularization (classify train only)
dropout: 0.0 # (float) use dropout regularization (classify train only)
# Val/Test settings ----------------------------------------------------------------------------------------------------
val: True # (bool) validate/test during training
split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
save_json: False # (bool) save results to JSON file
save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
max_det: 300 # (int) maximum number of detections per image
half: False # (bool) use half precision (FP16)
dnn: False # (bool) use OpenCV DNN for ONNX inference
plots: True # (bool) save plots and images during train/val
val: True # (bool) validate/test during training
split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
save_json: False # (bool) save results to JSON file
save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
max_det: 300 # (int) maximum number of detections per image
half: False # (bool) use half precision (FP16)
dnn: False # (bool) use OpenCV DNN for ONNX inference
plots: True # (bool) save plots and images during train/val
# Predict settings -----------------------------------------------------------------------------------------------------
source: # (str, optional) source directory for images or videos
vid_stride: 1 # (int) video frame-rate stride
stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False)
visualize: False # (bool) visualize model features
augment: False # (bool) apply image augmentation to prediction sources
agnostic_nms: False # (bool) class-agnostic NMS
classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3]
retina_masks: False # (bool) use high-resolution segmentation masks
embed: # (list[int], optional) return feature vectors/embeddings from given layers
source: # (str, optional) source directory for images or videos
vid_stride: 1 # (int) video frame-rate stride
stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False)
visualize: False # (bool) visualize model features
augment: False # (bool) apply image augmentation to prediction sources
agnostic_nms: False # (bool) class-agnostic NMS
classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3]
retina_masks: False # (bool) use high-resolution segmentation masks
embed: # (list[int], optional) return feature vectors/embeddings from given layers
# Visualize settings ---------------------------------------------------------------------------------------------------
show: False # (bool) show predicted images and videos if environment allows
save_frames: False # (bool) save predicted individual video frames
save_txt: False # (bool) save results as .txt file
save_conf: False # (bool) save results with confidence scores
save_crop: False # (bool) save cropped images with results
show_labels: True # (bool) show prediction labels, i.e. 'person'
show_conf: True # (bool) show prediction confidence, i.e. '0.99'
show_boxes: True # (bool) show prediction boxes
line_width: # (int, optional) line width of the bounding boxes. Scaled to image size if None.
show: False # (bool) show predicted images and videos if environment allows
save_frames: False # (bool) save predicted individual video frames
save_txt: False # (bool) save results as .txt file
save_conf: False # (bool) save results with confidence scores
save_crop: False # (bool) save cropped images with results
show_labels: True # (bool) show prediction labels, i.e. 'person'
show_conf: True # (bool) show prediction confidence, i.e. '0.99'
show_boxes: True # (bool) show prediction boxes
line_width: # (int, optional) line width of the bounding boxes. Scaled to image size if None.
# Export settings ------------------------------------------------------------------------------------------------------
format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
keras: False # (bool) use Kera=s
optimize: False # (bool) TorchScript: optimize for mobile
int8: False # (bool) CoreML/TF INT8 quantization
dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
simplify: False # (bool) ONNX: simplify model
opset: # (int, optional) ONNX: opset version
workspace: 4 # (int) TensorRT: workspace size (GB)
nms: False # (bool) CoreML: add NMS
format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
keras: False # (bool) use Kera=s
optimize: False # (bool) TorchScript: optimize for mobile
int8: False # (bool) CoreML/TF INT8 quantization
dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
simplify: False # (bool) ONNX: simplify model
opset: # (int, optional) ONNX: opset version
workspace: 4 # (int) TensorRT: workspace size (GB)
nms: False # (bool) CoreML: add NMS
# Hyperparameters ------------------------------------------------------------------------------------------------------
lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
lrf: 0.01 # (float) final learning rate (lr0 * lrf)
momentum: 0.937 # (float) SGD momentum/Adam beta1
weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
warmup_momentum: 0.8 # (float) warmup initial momentum
warmup_bias_lr: 0.1 # (float) warmup initial bias lr
box: 7.5 # (float) box loss gain
cls: 0.5 # (float) cls loss gain (scale with pixels)
dfl: 1.5 # (float) dfl loss gain
pose: 12.0 # (float) pose loss gain
kobj: 1.0 # (float) keypoint obj loss gain
label_smoothing: 0.0 # (float) label smoothing (fraction)
nbs: 64 # (int) nominal batch size
hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
degrees: 0.0 # (float) image rotation (+/- deg)
translate: 0.1 # (float) image translation (+/- fraction)
scale: 0.5 # (float) image scale (+/- gain)
shear: 0.0 # (float) image shear (+/- deg)
perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # (float) image flip up-down (probability)
fliplr: 0.5 # (float) image flip left-right (probability)
mosaic: 1.0 # (float) image mosaic (probability)
mixup: 0.0 # (float) image mixup (probability)
copy_paste: 0.0 # (float) segment copy-paste (probability)
auto_augment: randaugment # (str) auto augmentation policy for classification (randaugment, autoaugment, augmix)
erasing: 0.4 # (float) probability of random erasing during classification training (0-1)
crop_fraction: 1.0 # (float) image crop fraction for classification evaluation/inference (0-1)
lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
lrf: 0.01 # (float) final learning rate (lr0 * lrf)
momentum: 0.937 # (float) SGD momentum/Adam beta1
weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
warmup_momentum: 0.8 # (float) warmup initial momentum
warmup_bias_lr: 0.1 # (float) warmup initial bias lr
box: 7.5 # (float) box loss gain
cls: 0.5 # (float) cls loss gain (scale with pixels)
dfl: 1.5 # (float) dfl loss gain
pose: 12.0 # (float) pose loss gain
kobj: 1.0 # (float) keypoint obj loss gain
label_smoothing: 0.0 # (float) label smoothing (fraction)
nbs: 64 # (int) nominal batch size
hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
degrees: 0.0 # (float) image rotation (+/- deg)
translate: 0.1 # (float) image translation (+/- fraction)
scale: 0.5 # (float) image scale (+/- gain)
shear: 0.0 # (float) image shear (+/- deg)
perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # (float) image flip up-down (probability)
fliplr: 0.5 # (float) image flip left-right (probability)
mosaic: 1.0 # (float) image mosaic (probability)
mixup: 0.0 # (float) image mixup (probability)
copy_paste: 0.0 # (float) segment copy-paste (probability)
auto_augment: randaugment # (str) auto augmentation policy for classification (randaugment, autoaugment, augmix)
erasing: 0.4 # (float) probability of random erasing during classification training (0-1)
crop_fraction: 1.0 # (float) image crop fraction for classification evaluation/inference (0-1)
# Custom config.yaml ---------------------------------------------------------------------------------------------------
cfg: # (str, optional) for overriding defaults.yaml
cfg: # (str, optional) for overriding defaults.yaml
# Tracker settings ------------------------------------------------------------------------------------------------------
tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]
tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]

@ -2,49 +2,49 @@
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Parameters
nc: 80 # number of classes
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, HGStem, [32, 48]] # 0-P2/4
- [-1, 6, HGBlock, [48, 128, 3]] # stage 1
- [-1, 1, HGStem, [32, 48]] # 0-P2/4
- [-1, 6, HGBlock, [48, 128, 3]] # stage 1
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
- [-1, 6, HGBlock, [96, 512, 3]] # stage 2
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
- [-1, 6, HGBlock, [96, 512, 3]] # stage 2
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P3/16
- [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P3/16
- [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
- [-1, 6, HGBlock, [192, 1024, 5, True, True]]
- [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3
- [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P4/32
- [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P4/32
- [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0
- [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1
- [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
- [[-1, 17], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
- [[-1, 17], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
- [[-1, 12], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
- [[-1, 12], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1
- [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
- [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

@ -2,41 +2,41 @@
# RT-DETR-ResNet101 object detection model with P3-P5 outputs.
# Parameters
nc: 80 # number of classes
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0
- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1
- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2
- [-1, 1, ResNetLayer, [512, 256, 2, False, 23]] # 3
- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4
- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0
- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1
- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2
- [-1, 1, ResNetLayer, [512, 256, 2, False, 23]] # 3
- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 7
- [-1, 1, Conv, [256, 1, 1]] # 7
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256]] # 11
- [-1, 1, Conv, [256, 1, 1]] # 12
- [-1, 3, RepC3, [256]] # 11
- [-1, 1, Conv, [256, 1, 1]] # 12
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
- [[-1, 12], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
- [[-1, 12], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
- [[-1, 7], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
- [[-1, 7], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1
- [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
- [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

@ -2,41 +2,41 @@
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.
# Parameters
nc: 80 # number of classes
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0
- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1
- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2
- [-1, 1, ResNetLayer, [512, 256, 2, False, 6]] # 3
- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4
- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0
- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1
- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2
- [-1, 1, ResNetLayer, [512, 256, 2, False, 6]] # 3
- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 7
- [-1, 1, Conv, [256, 1, 1]] # 7
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256]] # 11
- [-1, 1, Conv, [256, 1, 1]] # 12
- [-1, 3, RepC3, [256]] # 11
- [-1, 1, Conv, [256, 1, 1]] # 12
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
- [[-1, 12], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
- [[-1, 12], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
- [[-1, 7], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
- [[-1, 7], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1
- [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
- [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

@ -2,53 +2,53 @@
# RT-DETR-x object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Parameters
nc: 80 # number of classes
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
x: [1.00, 1.00, 2048]
backbone:
# [from, repeats, module, args]
- [-1, 1, HGStem, [32, 64]] # 0-P2/4
- [-1, 6, HGBlock, [64, 128, 3]] # stage 1
- [-1, 1, HGStem, [32, 64]] # 0-P2/4
- [-1, 6, HGBlock, [64, 128, 3]] # stage 1
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
- [-1, 6, HGBlock, [128, 512, 3]]
- [-1, 6, HGBlock, [128, 512, 3, False, True]] # 4-stage 2
- [-1, 6, HGBlock, [128, 512, 3, False, True]] # 4-stage 2
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 5-P3/16
- [-1, 6, HGBlock, [256, 1024, 5, True, False]] # cm, c2, k, light, shortcut
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 5-P3/16
- [-1, 6, HGBlock, [256, 1024, 5, True, False]] # cm, c2, k, light, shortcut
- [-1, 6, HGBlock, [256, 1024, 5, True, True]]
- [-1, 6, HGBlock, [256, 1024, 5, True, True]]
- [-1, 6, HGBlock, [256, 1024, 5, True, True]]
- [-1, 6, HGBlock, [256, 1024, 5, True, True]] # 10-stage 3
- [-1, 6, HGBlock, [256, 1024, 5, True, True]] # 10-stage 3
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 11-P4/32
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 11-P4/32
- [-1, 6, HGBlock, [512, 2048, 5, True, False]]
- [-1, 6, HGBlock, [512, 2048, 5, True, True]] # 13-stage 4
- [-1, 6, HGBlock, [512, 2048, 5, True, True]] # 13-stage 4
head:
- [-1, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 14 input_proj.2
- [-1, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 14 input_proj.2
- [-1, 1, AIFI, [2048, 8]]
- [-1, 1, Conv, [384, 1, 1]] # 16, Y5, lateral_convs.0
- [-1, 1, Conv, [384, 1, 1]] # 16, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [10, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 18 input_proj.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [10, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 18 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [384]] # 20, fpn_blocks.0
- [-1, 1, Conv, [384, 1, 1]] # 21, Y4, lateral_convs.1
- [-1, 3, RepC3, [384]] # 20, fpn_blocks.0
- [-1, 1, Conv, [384, 1, 1]] # 21, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [4, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 23 input_proj.0
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [384]] # X3 (25), fpn_blocks.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [4, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 23 input_proj.0
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [384]] # X3 (25), fpn_blocks.1
- [-1, 1, Conv, [384, 3, 2]] # 26, downsample_convs.0
- [[-1, 21], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [384]] # F4 (28), pan_blocks.0
- [-1, 1, Conv, [384, 3, 2]] # 26, downsample_convs.0
- [[-1, 21], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [384]] # F4 (28), pan_blocks.0
- [-1, 1, Conv, [384, 3, 2]] # 29, downsample_convs.1
- [[-1, 16], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [384]] # F5 (31), pan_blocks.1
- [-1, 1, Conv, [384, 3, 2]] # 29, downsample_convs.1
- [[-1, 16], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [384]] # F5 (31), pan_blocks.1
- [[25, 28, 31], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
- [[25, 28, 31], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

@ -2,24 +2,24 @@
# YOLOv3-SPP object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
# darknet53 backbone
backbone:
# [from, number, module, args]
- [-1, 1, Conv, [32, 3, 1]] # 0
- [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
- [-1, 1, Conv, [32, 3, 1]] # 0
- [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
- [-1, 1, Bottleneck, [64]]
- [-1, 1, Conv, [128, 3, 2]] # 3-P2/4
- [-1, 1, Conv, [128, 3, 2]] # 3-P2/4
- [-1, 2, Bottleneck, [128]]
- [-1, 1, Conv, [256, 3, 2]] # 5-P3/8
- [-1, 1, Conv, [256, 3, 2]] # 5-P3/8
- [-1, 8, Bottleneck, [256]]
- [-1, 1, Conv, [512, 3, 2]] # 7-P4/16
- [-1, 1, Conv, [512, 3, 2]] # 7-P4/16
- [-1, 8, Bottleneck, [512]]
- [-1, 1, Conv, [1024, 3, 2]] # 9-P5/32
- [-1, 4, Bottleneck, [1024]] # 10
- [-1, 1, Conv, [1024, 3, 2]] # 9-P5/32
- [-1, 4, Bottleneck, [1024]] # 10
# YOLOv3-SPP head
head:
@ -27,20 +27,20 @@ head:
- [-1, 1, SPP, [512, [5, 9, 13]]]
- [-1, 1, Conv, [1024, 3, 1]]
- [-1, 1, Conv, [512, 1, 1]]
- [-1, 1, Conv, [1024, 3, 1]] # 15 (P5/32-large)
- [-1, 1, Conv, [1024, 3, 1]] # 15 (P5/32-large)
- [-2, 1, Conv, [256, 1, 1]]
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 8], 1, Concat, [1]] # cat backbone P4
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 8], 1, Concat, [1]] # cat backbone P4
- [-1, 1, Bottleneck, [512, False]]
- [-1, 1, Bottleneck, [512, False]]
- [-1, 1, Conv, [256, 1, 1]]
- [-1, 1, Conv, [512, 3, 1]] # 22 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 1]] # 22 (P4/16-medium)
- [-2, 1, Conv, [128, 1, 1]]
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P3
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P3
- [-1, 1, Bottleneck, [256, False]]
- [-1, 2, Bottleneck, [256, False]] # 27 (P3/8-small)
- [-1, 2, Bottleneck, [256, False]] # 27 (P3/8-small)
- [[27, 22, 15], 1, Detect, [nc]] # Detect(P3, P4, P5)
- [[27, 22, 15], 1, Detect, [nc]] # Detect(P3, P4, P5)

@ -2,36 +2,36 @@
# YOLOv3-tiny object detection model with P4-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
# YOLOv3-tiny backbone
backbone:
# [from, number, module, args]
- [-1, 1, Conv, [16, 3, 1]] # 0
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 1-P1/2
- [-1, 1, Conv, [16, 3, 1]] # 0
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 1-P1/2
- [-1, 1, Conv, [32, 3, 1]]
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 3-P2/4
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 3-P2/4
- [-1, 1, Conv, [64, 3, 1]]
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 5-P3/8
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 5-P3/8
- [-1, 1, Conv, [128, 3, 1]]
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 7-P4/16
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 7-P4/16
- [-1, 1, Conv, [256, 3, 1]]
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 9-P5/32
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 9-P5/32
- [-1, 1, Conv, [512, 3, 1]]
- [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]] # 11
- [-1, 1, nn.MaxPool2d, [2, 1, 0]] # 12
- [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]] # 11
- [-1, 1, nn.MaxPool2d, [2, 1, 0]] # 12
# YOLOv3-tiny head
head:
- [-1, 1, Conv, [1024, 3, 1]]
- [-1, 1, Conv, [256, 1, 1]]
- [-1, 1, Conv, [512, 3, 1]] # 15 (P5/32-large)
- [-1, 1, Conv, [512, 3, 1]] # 15 (P5/32-large)
- [-2, 1, Conv, [128, 1, 1]]
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 8], 1, Concat, [1]] # cat backbone P4
- [-1, 1, Conv, [256, 3, 1]] # 19 (P4/16-medium)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 8], 1, Concat, [1]] # cat backbone P4
- [-1, 1, Conv, [256, 3, 1]] # 19 (P4/16-medium)
- [[19, 15], 1, Detect, [nc]] # Detect(P4, P5)
- [[19, 15], 1, Detect, [nc]] # Detect(P4, P5)

@ -2,24 +2,24 @@
# YOLOv3 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
# darknet53 backbone
backbone:
# [from, number, module, args]
- [-1, 1, Conv, [32, 3, 1]] # 0
- [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
- [-1, 1, Conv, [32, 3, 1]] # 0
- [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
- [-1, 1, Bottleneck, [64]]
- [-1, 1, Conv, [128, 3, 2]] # 3-P2/4
- [-1, 1, Conv, [128, 3, 2]] # 3-P2/4
- [-1, 2, Bottleneck, [128]]
- [-1, 1, Conv, [256, 3, 2]] # 5-P3/8
- [-1, 1, Conv, [256, 3, 2]] # 5-P3/8
- [-1, 8, Bottleneck, [256]]
- [-1, 1, Conv, [512, 3, 2]] # 7-P4/16
- [-1, 1, Conv, [512, 3, 2]] # 7-P4/16
- [-1, 8, Bottleneck, [512]]
- [-1, 1, Conv, [1024, 3, 2]] # 9-P5/32
- [-1, 4, Bottleneck, [1024]] # 10
- [-1, 1, Conv, [1024, 3, 2]] # 9-P5/32
- [-1, 4, Bottleneck, [1024]] # 10
# YOLOv3 head
head:
@ -27,20 +27,20 @@ head:
- [-1, 1, Conv, [512, 1, 1]]
- [-1, 1, Conv, [1024, 3, 1]]
- [-1, 1, Conv, [512, 1, 1]]
- [-1, 1, Conv, [1024, 3, 1]] # 15 (P5/32-large)
- [-1, 1, Conv, [1024, 3, 1]] # 15 (P5/32-large)
- [-2, 1, Conv, [256, 1, 1]]
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 8], 1, Concat, [1]] # cat backbone P4
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 8], 1, Concat, [1]] # cat backbone P4
- [-1, 1, Bottleneck, [512, False]]
- [-1, 1, Bottleneck, [512, False]]
- [-1, 1, Conv, [256, 1, 1]]
- [-1, 1, Conv, [512, 3, 1]] # 22 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 1]] # 22 (P4/16-medium)
- [-2, 1, Conv, [128, 1, 1]]
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P3
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P3
- [-1, 1, Bottleneck, [256, False]]
- [-1, 2, Bottleneck, [256, False]] # 27 (P3/8-small)
- [-1, 2, Bottleneck, [256, False]] # 27 (P3/8-small)
- [[27, 22, 15], 1, Detect, [nc]] # Detect(P3, P4, P5)
- [[27, 22, 15], 1, Detect, [nc]] # Detect(P3, P4, P5)

@ -2,7 +2,7 @@
# YOLOv5 object detection model with P3-P6 outputs. For details see https://docs.ultralytics.com/models/yolov5
# Parameters
nc: 80 # number of classes
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n-p6.yaml' will call yolov5-p6.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]
@ -14,46 +14,46 @@ scales: # model compound scaling constants, i.e. 'model=yolov5n-p6.yaml' will ca
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
- [-1, 1, Conv, [64, 6, 2, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 1, Conv, [64, 6, 2, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C3, [128]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C3, [256]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 9, C3, [512]]
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
- [-1, 3, C3, [768]]
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
- [-1, 3, C3, [1024]]
- [-1, 1, SPPF, [1024, 5]] # 11
- [-1, 1, SPPF, [1024, 5]] # 11
# YOLOv5 v6.0 head
head:
- [-1, 1, Conv, [768, 1, 1]]
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
- [-1, 3, C3, [768, False]] # 15
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
- [-1, 3, C3, [768, False]] # 15
- [-1, 1, Conv, [512, 1, 1]]
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C3, [512, False]] # 19
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C3, [512, False]] # 19
- [-1, 1, Conv, [256, 1, 1]]
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C3, [256, False]] # 23 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C3, [256, False]] # 23 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 20], 1, Concat, [1]] # cat head P4
- [-1, 3, C3, [512, False]] # 26 (P4/16-medium)
- [[-1, 20], 1, Concat, [1]] # cat head P4
- [-1, 3, C3, [512, False]] # 26 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 16], 1, Concat, [1]] # cat head P5
- [-1, 3, C3, [768, False]] # 29 (P5/32-large)
- [[-1, 16], 1, Concat, [1]] # cat head P5
- [-1, 3, C3, [768, False]] # 29 (P5/32-large)
- [-1, 1, Conv, [768, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P6
- [-1, 3, C3, [1024, False]] # 32 (P6/64-xlarge)
- [[-1, 12], 1, Concat, [1]] # cat head P6
- [-1, 3, C3, [1024, False]] # 32 (P6/64-xlarge)
- [[23, 26, 29, 32], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)
- [[23, 26, 29, 32], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)

@ -2,7 +2,7 @@
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5
# Parameters
nc: 80 # number of classes
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]
@ -14,36 +14,35 @@ scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
- [-1, 1, Conv, [64, 6, 2, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 1, Conv, [64, 6, 2, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C3, [128]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C3, [256]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 9, C3, [512]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C3, [1024]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv5 v6.0 head
head:
- [-1, 1, Conv, [512, 1, 1]]
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C3, [512, False]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C3, [512, False]] # 13
- [-1, 1, Conv, [256, 1, 1]]
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C3, [256, False]] # 17 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C3, [256, False]] # 17 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 14], 1, Concat, [1]] # cat head P4
- [-1, 3, C3, [512, False]] # 20 (P4/16-medium)
- [[-1, 14], 1, Concat, [1]] # cat head P4
- [-1, 3, C3, [512, False]] # 20 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 3, C3, [1024, False]] # 23 (P5/32-large)
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 3, C3, [1024, False]] # 23 (P5/32-large)
- [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)
- [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)

@ -2,8 +2,8 @@
# YOLOv6 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/models/yolov6
# Parameters
nc: 80 # number of classes
activation: nn.ReLU() # (optional) model default activation function
nc: 80 # number of classes
activation: nn.ReLU() # (optional) model default activation function
scales: # model compound scaling constants, i.e. 'model=yolov6n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]
@ -15,39 +15,39 @@ scales: # model compound scaling constants, i.e. 'model=yolov6n.yaml' will call
# YOLOv6-3.0s backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 6, Conv, [128, 3, 1]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 12, Conv, [256, 3, 1]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 18, Conv, [512, 3, 1]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 6, Conv, [1024, 3, 1]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv6-3.0s head
head:
- [-1, 1, Conv, [256, 1, 1]]
- [-1, 1, nn.ConvTranspose2d, [256, 2, 2, 0]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 1, Conv, [256, 3, 1]]
- [-1, 9, Conv, [256, 3, 1]] # 14
- [-1, 9, Conv, [256, 3, 1]] # 14
- [-1, 1, Conv, [128, 1, 1]]
- [-1, 1, nn.ConvTranspose2d, [128, 2, 2, 0]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 1, Conv, [128, 3, 1]]
- [-1, 9, Conv, [128, 3, 1]] # 19
- [-1, 9, Conv, [128, 3, 1]] # 19
- [-1, 1, Conv, [128, 3, 2]]
- [[-1, 15], 1, Concat, [1]] # cat head P4
- [[-1, 15], 1, Concat, [1]] # cat head P4
- [-1, 1, Conv, [256, 3, 1]]
- [-1, 9, Conv, [256, 3, 1]] # 23
- [-1, 9, Conv, [256, 3, 1]] # 23
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 1, Conv, [512, 3, 1]]
- [-1, 9, Conv, [512, 3, 1]] # 27
- [-1, 9, Conv, [512, 3, 1]] # 27
- [[19, 23, 27], 1, Detect, [nc]] # Detect(P3, P4, P5)
- [[19, 23, 27], 1, Detect, [nc]] # Detect(P3, P4, P5)

@ -2,7 +2,7 @@
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
# Parameters
nc: 1000 # number of classes
nc: 1000 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]
@ -14,16 +14,16 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will c
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
# YOLOv8.0n head
head:
- [-1, 1, Classify, [nc]] # Classify
- [-1, 1, Classify, [nc]] # Classify

@ -2,53 +2,53 @@
# YOLOv8 object detection model with P2-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n-ghost-p2 summary: 491 layers, 2033944 parameters, 2033928 gradients, 13.8 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s-ghost-p2 summary: 491 layers, 5562080 parameters, 5562064 gradients, 25.1 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m-ghost-p2 summary: 731 layers, 9031728 parameters, 9031712 gradients, 42.8 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l-ghost-p2 summary: 971 layers, 12214448 parameters, 12214432 gradients, 69.1 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x-ghost-p2 summary: 971 layers, 18664776 parameters, 18664760 gradients, 103.3 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m-ghost-p2 summary: 731 layers, 9031728 parameters, 9031712 gradients, 42.8 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l-ghost-p2 summary: 971 layers, 12214448 parameters, 12214432 gradients, 69.1 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x-ghost-p2 summary: 971 layers, 18664776 parameters, 18664760 gradients, 103.3 GFLOPs
# YOLOv8.0-ghost backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, GhostConv, [128, 3, 2]] # 1-P2/4
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, GhostConv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C3Ghost, [128, True]]
- [-1, 1, GhostConv, [256, 3, 2]] # 3-P3/8
- [-1, 1, GhostConv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C3Ghost, [256, True]]
- [-1, 1, GhostConv, [512, 3, 2]] # 5-P4/16
- [-1, 1, GhostConv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C3Ghost, [512, True]]
- [-1, 1, GhostConv, [1024, 3, 2]] # 7-P5/32
- [-1, 1, GhostConv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C3Ghost, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0-ghost-p2 head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C3Ghost, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C3Ghost, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C3Ghost, [256]] # 15 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C3Ghost, [256]] # 15 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 2], 1, Concat, [1]] # cat backbone P2
- [-1, 3, C3Ghost, [128]] # 18 (P2/4-xsmall)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 2], 1, Concat, [1]] # cat backbone P2
- [-1, 3, C3Ghost, [128]] # 18 (P2/4-xsmall)
- [-1, 1, GhostConv, [128, 3, 2]]
- [[-1, 15], 1, Concat, [1]] # cat head P3
- [-1, 3, C3Ghost, [256]] # 21 (P3/8-small)
- [[-1, 15], 1, Concat, [1]] # cat head P3
- [-1, 3, C3Ghost, [256]] # 21 (P3/8-small)
- [-1, 1, GhostConv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C3Ghost, [512]] # 24 (P4/16-medium)
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C3Ghost, [512]] # 24 (P4/16-medium)
- [-1, 1, GhostConv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C3Ghost, [1024]] # 27 (P5/32-large)
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C3Ghost, [1024]] # 27 (P5/32-large)
- [[18, 21, 24, 27], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)
- [[18, 21, 24, 27], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)

@ -2,55 +2,55 @@
# YOLOv8 object detection model with P3-P6 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n-ghost-p6 summary: 529 layers, 2901100 parameters, 2901084 gradients, 5.8 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s-ghost-p6 summary: 529 layers, 9520008 parameters, 9519992 gradients, 16.4 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m-ghost-p6 summary: 789 layers, 18002904 parameters, 18002888 gradients, 34.4 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l-ghost-p6 summary: 1049 layers, 21227584 parameters, 21227568 gradients, 55.3 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x-ghost-p6 summary: 1049 layers, 33057852 parameters, 33057836 gradients, 85.7 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m-ghost-p6 summary: 789 layers, 18002904 parameters, 18002888 gradients, 34.4 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l-ghost-p6 summary: 1049 layers, 21227584 parameters, 21227568 gradients, 55.3 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x-ghost-p6 summary: 1049 layers, 33057852 parameters, 33057836 gradients, 85.7 GFLOPs
# YOLOv8.0-ghost backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, GhostConv, [128, 3, 2]] # 1-P2/4
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, GhostConv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C3Ghost, [128, True]]
- [-1, 1, GhostConv, [256, 3, 2]] # 3-P3/8
- [-1, 1, GhostConv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C3Ghost, [256, True]]
- [-1, 1, GhostConv, [512, 3, 2]] # 5-P4/16
- [-1, 1, GhostConv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C3Ghost, [512, True]]
- [-1, 1, GhostConv, [768, 3, 2]] # 7-P5/32
- [-1, 1, GhostConv, [768, 3, 2]] # 7-P5/32
- [-1, 3, C3Ghost, [768, True]]
- [-1, 1, GhostConv, [1024, 3, 2]] # 9-P6/64
- [-1, 1, GhostConv, [1024, 3, 2]] # 9-P6/64
- [-1, 3, C3Ghost, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 11
- [-1, 1, SPPF, [1024, 5]] # 11
# YOLOv8.0-ghost-p6 head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
- [-1, 3, C3Ghost, [768]] # 14
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
- [-1, 3, C3Ghost, [768]] # 14
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C3Ghost, [512]] # 17
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C3Ghost, [512]] # 17
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C3Ghost, [256]] # 20 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C3Ghost, [256]] # 20 (P3/8-small)
- [-1, 1, GhostConv, [256, 3, 2]]
- [[-1, 17], 1, Concat, [1]] # cat head P4
- [-1, 3, C3Ghost, [512]] # 23 (P4/16-medium)
- [[-1, 17], 1, Concat, [1]] # cat head P4
- [-1, 3, C3Ghost, [512]] # 23 (P4/16-medium)
- [-1, 1, GhostConv, [512, 3, 2]]
- [[-1, 14], 1, Concat, [1]] # cat head P5
- [-1, 3, C3Ghost, [768]] # 26 (P5/32-large)
- [[-1, 14], 1, Concat, [1]] # cat head P5
- [-1, 3, C3Ghost, [768]] # 26 (P5/32-large)
- [-1, 1, GhostConv, [768, 3, 2]]
- [[-1, 11], 1, Concat, [1]] # cat head P6
- [-1, 3, C3Ghost, [1024]] # 29 (P6/64-xlarge)
- [[-1, 11], 1, Concat, [1]] # cat head P6
- [-1, 3, C3Ghost, [1024]] # 29 (P6/64-xlarge)
- [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)
- [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)

@ -3,45 +3,45 @@
# Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
# Parameters
nc: 80 # number of classes
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n-ghost summary: 403 layers, 1865316 parameters, 1865300 gradients, 5.8 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s-ghost summary: 403 layers, 5960072 parameters, 5960056 gradients, 16.4 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m-ghost summary: 603 layers, 10336312 parameters, 10336296 gradients, 32.7 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l-ghost summary: 803 layers, 14277872 parameters, 14277856 gradients, 53.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x-ghost summary: 803 layers, 22229308 parameters, 22229292 gradients, 83.3 GFLOPs
n: [0.33, 0.25, 1024] # YOLOv8n-ghost summary: 403 layers, 1865316 parameters, 1865300 gradients, 5.8 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s-ghost summary: 403 layers, 5960072 parameters, 5960056 gradients, 16.4 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m-ghost summary: 603 layers, 10336312 parameters, 10336296 gradients, 32.7 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l-ghost summary: 803 layers, 14277872 parameters, 14277856 gradients, 53.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x-ghost summary: 803 layers, 22229308 parameters, 22229292 gradients, 83.3 GFLOPs
# YOLOv8.0n-ghost backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, GhostConv, [128, 3, 2]] # 1-P2/4
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, GhostConv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C3Ghost, [128, True]]
- [-1, 1, GhostConv, [256, 3, 2]] # 3-P3/8
- [-1, 1, GhostConv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C3Ghost, [256, True]]
- [-1, 1, GhostConv, [512, 3, 2]] # 5-P4/16
- [-1, 1, GhostConv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C3Ghost, [512, True]]
- [-1, 1, GhostConv, [1024, 3, 2]] # 7-P5/32
- [-1, 1, GhostConv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C3Ghost, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C3Ghost, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C3Ghost, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C3Ghost, [256]] # 15 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C3Ghost, [256]] # 15 (P3/8-small)
- [-1, 1, GhostConv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C3Ghost, [512]] # 18 (P4/16-medium)
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C3Ghost, [512]] # 18 (P4/16-medium)
- [-1, 1, GhostConv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C3Ghost, [1024]] # 21 (P5/32-large)
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C3Ghost, [1024]] # 21 (P5/32-large)
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)

@ -2,45 +2,45 @@
# YOLOv8 Oriented Bounding Boxes (OBB) model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[15, 18, 21], 1, OBB, [nc, 1]] # OBB(P3, P4, P5)
- [[15, 18, 21], 1, OBB, [nc, 1]] # OBB(P3, P4, P5)

@ -2,7 +2,7 @@
# YOLOv8 object detection model with P2-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]
@ -14,41 +14,41 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call
# YOLOv8.0 backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0-p2 head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 2], 1, Concat, [1]] # cat backbone P2
- [-1, 3, C2f, [128]] # 18 (P2/4-xsmall)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 2], 1, Concat, [1]] # cat backbone P2
- [-1, 3, C2f, [128]] # 18 (P2/4-xsmall)
- [-1, 1, Conv, [128, 3, 2]]
- [[-1, 15], 1, Concat, [1]] # cat head P3
- [-1, 3, C2f, [256]] # 21 (P3/8-small)
- [[-1, 15], 1, Concat, [1]] # cat head P3
- [-1, 3, C2f, [256]] # 21 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 24 (P4/16-medium)
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 24 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 27 (P5/32-large)
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 27 (P5/32-large)
- [[18, 21, 24, 27], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)
- [[18, 21, 24, 27], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)

@ -2,7 +2,7 @@
# YOLOv8 object detection model with P3-P6 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]
@ -14,43 +14,43 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will ca
# YOLOv8.0x6 backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [768, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 11
- [-1, 1, SPPF, [1024, 5]] # 11
# YOLOv8.0x6 head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
- [-1, 3, C2, [768, False]] # 14
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
- [-1, 3, C2, [768, False]] # 14
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2, [512, False]] # 17
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2, [512, False]] # 17
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2, [256, False]] # 20 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2, [256, False]] # 20 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 17], 1, Concat, [1]] # cat head P4
- [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
- [[-1, 17], 1, Concat, [1]] # cat head P4
- [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 14], 1, Concat, [1]] # cat head P5
- [-1, 3, C2, [768, False]] # 26 (P5/32-large)
- [[-1, 14], 1, Concat, [1]] # cat head P5
- [-1, 3, C2, [768, False]] # 26 (P5/32-large)
- [-1, 1, Conv, [768, 3, 2]]
- [[-1, 11], 1, Concat, [1]] # cat head P6
- [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
- [[-1, 11], 1, Concat, [1]] # cat head P6
- [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
- [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)
- [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)

@ -2,8 +2,8 @@
# YOLOv8-pose-p6 keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose
# Parameters
nc: 1 # number of classes
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
nc: 1 # number of classes
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]
@ -15,43 +15,43 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will ca
# YOLOv8.0x6 backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [768, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 11
- [-1, 1, SPPF, [1024, 5]] # 11
# YOLOv8.0x6 head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
- [-1, 3, C2, [768, False]] # 14
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
- [-1, 3, C2, [768, False]] # 14
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2, [512, False]] # 17
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2, [512, False]] # 17
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2, [256, False]] # 20 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2, [256, False]] # 20 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 17], 1, Concat, [1]] # cat head P4
- [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
- [[-1, 17], 1, Concat, [1]] # cat head P4
- [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 14], 1, Concat, [1]] # cat head P5
- [-1, 3, C2, [768, False]] # 26 (P5/32-large)
- [[-1, 14], 1, Concat, [1]] # cat head P5
- [-1, 3, C2, [768, False]] # 26 (P5/32-large)
- [-1, 1, Conv, [768, 3, 2]]
- [[-1, 11], 1, Concat, [1]] # cat head P6
- [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
- [[-1, 11], 1, Concat, [1]] # cat head P6
- [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
- [[20, 23, 26, 29], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5, P6)
- [[20, 23, 26, 29], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5, P6)

@ -2,8 +2,8 @@
# YOLOv8-pose keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose
# Parameters
nc: 1 # number of classes
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
nc: 1 # number of classes
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
scales: # model compound scaling constants, i.e. 'model=yolov8n-pose.yaml' will call yolov8-pose.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]
@ -15,33 +15,33 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n-pose.yaml' will
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[15, 18, 21], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5)
- [[15, 18, 21], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5)

@ -2,45 +2,45 @@
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[15, 18, 21], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
- [[15, 18, 21], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

@ -2,7 +2,7 @@
# YOLOv8-seg-p6 instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment
# Parameters
nc: 80 # number of classes
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-seg-p6.yaml' will call yolov8-seg-p6.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]
@ -14,43 +14,43 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n-seg-p6.yaml' wil
# YOLOv8.0x6 backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [768, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 11
- [-1, 1, SPPF, [1024, 5]] # 11
# YOLOv8.0x6 head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
- [-1, 3, C2, [768, False]] # 14
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
- [-1, 3, C2, [768, False]] # 14
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2, [512, False]] # 17
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2, [512, False]] # 17
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2, [256, False]] # 20 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2, [256, False]] # 20 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 17], 1, Concat, [1]] # cat head P4
- [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
- [[-1, 17], 1, Concat, [1]] # cat head P4
- [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 14], 1, Concat, [1]] # cat head P5
- [-1, 3, C2, [768, False]] # 26 (P5/32-large)
- [[-1, 14], 1, Concat, [1]] # cat head P5
- [-1, 3, C2, [768, False]] # 26 (P5/32-large)
- [-1, 1, Conv, [768, 3, 2]]
- [[-1, 11], 1, Concat, [1]] # cat head P6
- [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
- [[-1, 11], 1, Concat, [1]] # cat head P6
- [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
- [[20, 23, 26, 29], 1, Segment, [nc, 32, 256]] # Pose(P3, P4, P5, P6)
- [[20, 23, 26, 29], 1, Segment, [nc, 32, 256]] # Pose(P3, P4, P5, P6)

@ -2,7 +2,7 @@
# YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment
# Parameters
nc: 80 # number of classes
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will call yolov8-seg.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]
@ -14,33 +14,33 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will c
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
- [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)

@ -2,45 +2,45 @@
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)

@ -1,17 +1,17 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Default YOLO tracker settings for BoT-SORT tracker https://github.com/NirAharon/BoT-SORT
tracker_type: botsort # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.5 # threshold for the first association
track_low_thresh: 0.1 # threshold for the second association
new_track_thresh: 0.6 # threshold for init new track if the detection does not match any tracks
track_buffer: 30 # buffer to calculate the time when to remove tracks
match_thresh: 0.8 # threshold for matching tracks
tracker_type: botsort # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.5 # threshold for the first association
track_low_thresh: 0.1 # threshold for the second association
new_track_thresh: 0.6 # threshold for init new track if the detection does not match any tracks
track_buffer: 30 # buffer to calculate the time when to remove tracks
match_thresh: 0.8 # threshold for matching tracks
# min_box_area: 10 # threshold for min box areas(for tracker evaluation, not used for now)
# mot20: False # for tracker evaluation(not used for now)
# BoT-SORT settings
gmc_method: sparseOptFlow # method of global motion compensation
gmc_method: sparseOptFlow # method of global motion compensation
# ReID model related thresh (not supported yet)
proximity_thresh: 0.5
appearance_thresh: 0.25

@ -1,11 +1,11 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Default YOLO tracker settings for ByteTrack tracker https://github.com/ifzhang/ByteTrack
tracker_type: bytetrack # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.5 # threshold for the first association
track_low_thresh: 0.1 # threshold for the second association
new_track_thresh: 0.6 # threshold for init new track if the detection does not match any tracks
track_buffer: 30 # buffer to calculate the time when to remove tracks
match_thresh: 0.8 # threshold for matching tracks
tracker_type: bytetrack # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.5 # threshold for the first association
track_low_thresh: 0.1 # threshold for the second association
new_track_thresh: 0.6 # threshold for init new track if the detection does not match any tracks
track_buffer: 30 # buffer to calculate the time when to remove tracks
match_thresh: 0.8 # threshold for matching tracks
# min_box_area: 10 # threshold for min box areas(for tracker evaluation, not used for now)
# mot20: False # for tracker evaluation(not used for now)

Loading…
Cancel
Save