`ultralytics 8.2.46` fix OBB Results `xyxy` attribute (#14020)

pull/14088/head^2 v8.2.46
Glenn Jocher 7 months ago committed by GitHub
parent 69cfc8aa22
commit 5f7d76e2eb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 2
      pyproject.toml
  2. 3
      tests/test_python.py
  3. 2
      ultralytics/__init__.py
  4. 13
      ultralytics/engine/results.py

@ -64,7 +64,7 @@ classifiers = [
# Required dependencies ------------------------------------------------------------------------------------------------
dependencies = [
"numpy>=1.23.5,<2.0.0", # temporary patch for compat errors https://github.com/ultralytics/yolov5/actions/runs/9538130424/job/26286956354
"numpy>=1.23.0,<2.0.0", # temporary patch for compat errors https://github.com/ultralytics/yolov5/actions/runs/9538130424/job/26286956354
"matplotlib>=3.3.0",
"opencv-python>=4.6.0",
"pillow>=7.1.2",

@ -236,13 +236,14 @@ def test_results(model):
results = YOLO(WEIGHTS_DIR / model)([SOURCE, SOURCE], imgsz=160)
for r in results:
r = r.cpu().numpy()
print(r, len(r), r.path) # print numpy attributes
r = r.to(device="cpu", dtype=torch.float32)
r.save_txt(txt_file=TMP / "runs/tests/label.txt", save_conf=True)
r.save_crop(save_dir=TMP / "runs/tests/crops/")
r.tojson(normalize=True)
r.plot(pil=True)
r.plot(conf=True, boxes=True)
print(r, len(r), r.path)
print(r, len(r), r.path) # print after methods
def test_labels_and_crops():

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = "8.2.45"
__version__ = "8.2.46"
import os

@ -743,9 +743,10 @@ class OBB(BaseTensor):
Accepts both torch and numpy boxes.
"""
x1 = self.xyxyxyxy[..., 0].min(1).values
x2 = self.xyxyxyxy[..., 0].max(1).values
y1 = self.xyxyxyxy[..., 1].min(1).values
y2 = self.xyxyxyxy[..., 1].max(1).values
xyxy = [x1, y1, x2, y2]
return np.stack(xyxy, axis=-1) if isinstance(self.data, np.ndarray) else torch.stack(xyxy, dim=-1)
x = self.xyxyxyxy[..., 0]
y = self.xyxyxyxy[..., 1]
return (
torch.stack([x.amin(1), y.amin(1), x.amax(1), y.amax(1)], -1)
if isinstance(x, torch.Tensor)
else np.stack([x.min(1), y.min(1), x.max(1), y.max(1)], -1)
)

Loading…
Cancel
Save