|
|
|
@ -810,6 +810,22 @@ class CopyPaste: |
|
|
|
|
i = cv2.flip(im_new, 1).astype(bool) |
|
|
|
|
im[i] = result[i] |
|
|
|
|
|
|
|
|
|
im_new = np.zeros(im.shape, np.uint8) |
|
|
|
|
ins_flip = deepcopy(instances) |
|
|
|
|
ins_flip.flipud(w) |
|
|
|
|
|
|
|
|
|
ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes) # intersection over area, (N, M) |
|
|
|
|
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, ) |
|
|
|
|
n = len(indexes) |
|
|
|
|
for j in random.sample(list(indexes), k=round(self.p * n)): |
|
|
|
|
cls = np.concatenate((cls, cls[[j]]), axis=0) |
|
|
|
|
instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0) |
|
|
|
|
cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED) |
|
|
|
|
|
|
|
|
|
result = cv2.flip(im, 0) # augment segments (flip left-right) |
|
|
|
|
i = cv2.flip(im_new, 0).astype(bool) |
|
|
|
|
im[i] = result[i] |
|
|
|
|
|
|
|
|
|
labels["img"] = im |
|
|
|
|
labels["cls"] = cls |
|
|
|
|
labels["instances"] = instances |
|
|
|
|