[Example] RTDETR-ONNXRuntime-Python (#18369)
parent
12db1f3143
commit
5b76bed7d0
3 changed files with 257 additions and 0 deletions
@ -0,0 +1,43 @@ |
||||
# RTDETR - ONNX Runtime |
||||
|
||||
This project implements RTDETR using ONNX Runtime. |
||||
|
||||
## Installation |
||||
|
||||
To run this project, you need to install the required dependencies. The following instructions will guide you through the installation process. |
||||
|
||||
### Installing Required Dependencies |
||||
|
||||
You can install the required dependencies by running the following command: |
||||
|
||||
```bash |
||||
pip install -r requirements.txt |
||||
``` |
||||
|
||||
### Installing `onnxruntime-gpu` |
||||
|
||||
If you have an NVIDIA GPU and want to leverage GPU acceleration, you can install the onnxruntime-gpu package using the following command: |
||||
|
||||
```bash |
||||
pip install onnxruntime-gpu |
||||
``` |
||||
|
||||
Note: Make sure you have the appropriate GPU drivers installed on your system. |
||||
|
||||
### Installing `onnxruntime` (CPU version) |
||||
|
||||
If you don't have an NVIDIA GPU or prefer to use the CPU version of onnxruntime, you can install the onnxruntime package using the following command: |
||||
|
||||
```bash |
||||
pip install onnxruntime |
||||
``` |
||||
|
||||
### Usage |
||||
|
||||
After successfully installing the required packages, you can run the RTDETR implementation using the following command: |
||||
|
||||
```bash |
||||
python main.py --model rtdetr-l.onnx --img image.jpg --conf-thres 0.5 --iou-thres 0.5 |
||||
``` |
||||
|
||||
Make sure to replace rtdetr-l.onnx with the path to your RTDETR ONNX model file, image.jpg with the path to your input image, and adjust the confidence threshold (conf-thres) and IoU threshold (iou-thres) values as needed. |
@ -0,0 +1,213 @@ |
||||
import argparse |
||||
|
||||
import cv2 |
||||
import numpy as np |
||||
import onnxruntime as ort |
||||
import torch |
||||
|
||||
from ultralytics.utils import ASSETS, yaml_load |
||||
from ultralytics.utils.checks import check_requirements, check_yaml |
||||
|
||||
class RTDETR: |
||||
"""RTDETR object detection model class for handling inference and visualization.""" |
||||
|
||||
def __init__(self, model_path, img_path, conf_thres=0.5, iou_thres=0.5): |
||||
""" |
||||
Initializes the RTDETR object with the specified parameters. |
||||
|
||||
Args: |
||||
model_path: Path to the ONNX model file. |
||||
img_path: Path to the input image. |
||||
conf_thres: Confidence threshold for object detection. |
||||
iou_thres: IoU threshold for non-maximum suppression |
||||
""" |
||||
self.model_path = model_path |
||||
self.img_path = img_path |
||||
self.conf_thres = conf_thres |
||||
self.iou_thres = iou_thres |
||||
|
||||
# Set up the ONNX runtime session with CUDA and CPU execution providers |
||||
self.session = ort.InferenceSession(model_path, providers=["CUDAExecutionProvider", "CPUExecutionProvider"]) |
||||
self.model_input = self.session.get_inputs() |
||||
self.input_width = self.model_input[0].shape[2] |
||||
self.input_height = self.model_input[0].shape[3] |
||||
|
||||
# Load class names from the COCO dataset YAML file |
||||
self.classes = yaml_load(check_yaml("coco8.yaml"))["names"] |
||||
|
||||
# Generate a color palette for drawing bounding boxes |
||||
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3)) |
||||
|
||||
def draw_detections(self, box, score, class_id): |
||||
""" |
||||
Draws bounding boxes and labels on the input image based on the detected objects. |
||||
|
||||
Args: |
||||
box: Detected bounding box. |
||||
score: Corresponding detection score. |
||||
class_id: Class ID for the detected object. |
||||
|
||||
Returns: |
||||
None |
||||
""" |
||||
# Extract the coordinates of the bounding box |
||||
x1, y1, x2, y2 = box |
||||
|
||||
# Retrieve the color for the class ID |
||||
color = self.color_palette[class_id] |
||||
|
||||
# Draw the bounding box on the image |
||||
cv2.rectangle(self.img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2) |
||||
|
||||
# Create the label text with class name and score |
||||
label = f"{self.classes[class_id]}: {score:.2f}" |
||||
|
||||
# Calculate the dimensions of the label text |
||||
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) |
||||
|
||||
# Calculate the position of the label text |
||||
label_x = x1 |
||||
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 |
||||
|
||||
# Draw a filled rectangle as the background for the label text |
||||
cv2.rectangle( |
||||
self.img, (int(label_x), int(label_y - label_height)), (int(label_x + label_width), int(label_y + label_height)), color, cv2.FILLED |
||||
) |
||||
|
||||
# Draw the label text on the image |
||||
cv2.putText(self.img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) |
||||
|
||||
def preprocess(self): |
||||
""" |
||||
Preprocesses the input image before performing inference. |
||||
|
||||
Returns: |
||||
image_data: Preprocessed image data ready for inference. |
||||
""" |
||||
# Read the input image using OpenCV |
||||
self.img = cv2.imread(self.img_path) |
||||
|
||||
# Get the height and width of the input image |
||||
self.img_height, self.img_width = self.img.shape[:2] |
||||
|
||||
# Convert the image color space from BGR to RGB |
||||
img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB) |
||||
|
||||
# Resize the image to match the input shape |
||||
img = cv2.resize(img, (self.input_width, self.input_height)) |
||||
|
||||
# Normalize the image data by dividing it by 255.0 |
||||
image_data = np.array(img) / 255.0 |
||||
|
||||
# Transpose the image to have the channel dimension as the first dimension |
||||
image_data = np.transpose(image_data, (2, 0, 1)) # Channel first |
||||
|
||||
# Expand the dimensions of the image data to match the expected input shape |
||||
image_data = np.expand_dims(image_data, axis=0).astype(np.float32) |
||||
|
||||
# Return the preprocessed image data |
||||
return image_data |
||||
|
||||
def bbox_cxcywh_to_xyxy(self, boxes): |
||||
""" |
||||
Converts bounding boxes from (center x, center y, width, height) format |
||||
to (x_min, y_min, x_max, y_max) format. |
||||
|
||||
Args: |
||||
boxes (numpy.ndarray): An array of shape (N, 4) where each row represents |
||||
a bounding box in (cx, cy, w, h) format. |
||||
|
||||
Returns: |
||||
numpy.ndarray: An array of shape (N, 4) where each row represents |
||||
a bounding box in (x_min, y_min, x_max, y_max) format. |
||||
""" |
||||
# Calculate half width and half height of the bounding boxes |
||||
half_width = boxes[:, 2] / 2 |
||||
half_height = boxes[:, 3] / 2 |
||||
|
||||
# Calculate the coordinates of the bounding boxes |
||||
x_min = boxes[:, 0] - half_width |
||||
y_min = boxes[:, 1] - half_height |
||||
x_max = boxes[:, 0] + half_width |
||||
y_max = boxes[:, 1] + half_height |
||||
|
||||
# Return the bounding boxes in (x_min, y_min, x_max, y_max) format |
||||
return np.column_stack((x_min, y_min, x_max, y_max)) |
||||
|
||||
def postprocess(self, model_output): |
||||
""" |
||||
Postprocesses the model output to extract detections and draw them on the input image. |
||||
|
||||
Args: |
||||
model_output: Output of the model inference. |
||||
|
||||
Returns: |
||||
np.array: Annotated image with detections. |
||||
""" |
||||
# Squeeze the model output to remove unnecessary dimensions |
||||
outputs = np.squeeze(model_output[0]) |
||||
|
||||
# Extract bounding boxes and scores from the model output |
||||
boxes = outputs[:, :4] |
||||
scores = outputs[:, 4:] |
||||
|
||||
# Get the class labels and scores for each detection |
||||
labels = np.argmax(scores, axis=1) |
||||
scores = np.max(scores, axis=1) |
||||
|
||||
# Apply confidence threshold to filter out low-confidence detections |
||||
mask = scores > self.conf_thres |
||||
boxes, scores, labels = boxes[mask], scores[mask], labels[mask] |
||||
|
||||
# Convert bounding boxes to (x_min, y_min, x_max, y_max) format |
||||
boxes = self.bbox_cxcywh_to_xyxy(boxes) |
||||
|
||||
# Scale bounding boxes to match the original image dimensions |
||||
boxes[:, 0::2] *= self.img_width |
||||
boxes[:, 1::2] *= self.img_height |
||||
|
||||
# Draw detections on the image |
||||
for box, score, label in zip(boxes, scores, labels): |
||||
self.draw_detections(box, score, label) |
||||
|
||||
# Return the annotated image |
||||
return self.img |
||||
|
||||
def main(self): |
||||
""" |
||||
Executes the detection on the input image using the ONNX model. |
||||
|
||||
Returns: |
||||
np.array: Output image with annotations. |
||||
""" |
||||
# Preprocess the image for model input |
||||
image_data = self.preprocess() |
||||
|
||||
# Run the model inference |
||||
model_output = self.session.run(None, {self.model_input[0].name: image_data}) |
||||
|
||||
# Process and return the model output |
||||
return self.postprocess(model_output) |
||||
|
||||
if __name__ == "__main__": |
||||
# Set up argument parser for command-line arguments |
||||
parser = argparse.ArgumentParser() |
||||
parser.add_argument("--model", type=str, default="rtdetr-l.onnx", help="Path to the ONNX model file.") |
||||
parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to the input image.") |
||||
parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold for object detection.") |
||||
parser.add_argument("--iou-thres", type=float, default=0.5, help="IoU threshold for non-maximum suppression.") |
||||
args = parser.parse_args() |
||||
|
||||
# Check for dependencies and set up ONNX runtime |
||||
check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime") |
||||
|
||||
# Create the detector instance with specified parameters |
||||
detection = RTDETR(args.model, args.img, args.conf_thres, args.iou_thres) |
||||
|
||||
# Perform detection and get the output image |
||||
output_image = detection.main() |
||||
|
||||
# Display the annotated output image |
||||
cv2.namedWindow("Output", cv2.WINDOW_NORMAL) |
||||
cv2.imshow("Output", output_image) |
||||
cv2.waitKey(0) |
Loading…
Reference in new issue