[Example] RTDETR-ONNXRuntime-Python (#18369)

pull/18316/head
Semih Demirel 2 months ago committed by GitHub
parent 12db1f3143
commit 5b76bed7d0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 1
      examples/README.md
  2. 43
      examples/RTDETR-ONNXRuntime-Python/README.md
  3. 213
      examples/RTDETR-ONNXRuntime-Python/main.py

@ -12,6 +12,7 @@ This directory features a collection of real-world applications and walkthroughs
| [YOLO .Net ONNX Detection C#](https://www.nuget.org/packages/Yolov8.Net) | C# .Net | [Samuel Stainback](https://github.com/sstainba) |
| [YOLOv8 on NVIDIA Jetson(TensorRT and DeepStream)](https://wiki.seeedstudio.com/YOLOv8-DeepStream-TRT-Jetson/) | Python | [Lakshantha](https://github.com/lakshanthad) |
| [YOLOv8 ONNXRuntime Python](./YOLOv8-ONNXRuntime) | Python/ONNXRuntime | [Semih Demirel](https://github.com/semihhdemirel) |
| [RTDETR ONNXRuntime Python](./RTDETR-ONNXRuntime-Python) | Python/ONNXRuntime | [Semih Demirel](https://github.com/semihhdemirel) |
| [YOLOv8 ONNXRuntime CPP](./YOLOv8-ONNXRuntime-CPP) | C++/ONNXRuntime | [DennisJcy](https://github.com/DennisJcy), [Onuralp Sezer](https://github.com/onuralpszr) |
| [RTDETR ONNXRuntime C#](https://github.com/Kayzwer/yolo-cs/blob/master/RTDETR.cs) | C#/ONNX | [Kayzwer](https://github.com/Kayzwer) |
| [YOLOv8 SAHI Video Inference](https://github.com/RizwanMunawar/ultralytics/blob/main/examples/YOLOv8-SAHI-Inference-Video/yolov8_sahi.py) | Python | [Muhammad Rizwan Munawar](https://github.com/RizwanMunawar) |

@ -0,0 +1,43 @@
# RTDETR - ONNX Runtime
This project implements RTDETR using ONNX Runtime.
## Installation
To run this project, you need to install the required dependencies. The following instructions will guide you through the installation process.
### Installing Required Dependencies
You can install the required dependencies by running the following command:
```bash
pip install -r requirements.txt
```
### Installing `onnxruntime-gpu`
If you have an NVIDIA GPU and want to leverage GPU acceleration, you can install the onnxruntime-gpu package using the following command:
```bash
pip install onnxruntime-gpu
```
Note: Make sure you have the appropriate GPU drivers installed on your system.
### Installing `onnxruntime` (CPU version)
If you don't have an NVIDIA GPU or prefer to use the CPU version of onnxruntime, you can install the onnxruntime package using the following command:
```bash
pip install onnxruntime
```
### Usage
After successfully installing the required packages, you can run the RTDETR implementation using the following command:
```bash
python main.py --model rtdetr-l.onnx --img image.jpg --conf-thres 0.5 --iou-thres 0.5
```
Make sure to replace rtdetr-l.onnx with the path to your RTDETR ONNX model file, image.jpg with the path to your input image, and adjust the confidence threshold (conf-thres) and IoU threshold (iou-thres) values as needed.

@ -0,0 +1,213 @@
import argparse
import cv2
import numpy as np
import onnxruntime as ort
import torch
from ultralytics.utils import ASSETS, yaml_load
from ultralytics.utils.checks import check_requirements, check_yaml
class RTDETR:
"""RTDETR object detection model class for handling inference and visualization."""
def __init__(self, model_path, img_path, conf_thres=0.5, iou_thres=0.5):
"""
Initializes the RTDETR object with the specified parameters.
Args:
model_path: Path to the ONNX model file.
img_path: Path to the input image.
conf_thres: Confidence threshold for object detection.
iou_thres: IoU threshold for non-maximum suppression
"""
self.model_path = model_path
self.img_path = img_path
self.conf_thres = conf_thres
self.iou_thres = iou_thres
# Set up the ONNX runtime session with CUDA and CPU execution providers
self.session = ort.InferenceSession(model_path, providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
self.model_input = self.session.get_inputs()
self.input_width = self.model_input[0].shape[2]
self.input_height = self.model_input[0].shape[3]
# Load class names from the COCO dataset YAML file
self.classes = yaml_load(check_yaml("coco8.yaml"))["names"]
# Generate a color palette for drawing bounding boxes
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
def draw_detections(self, box, score, class_id):
"""
Draws bounding boxes and labels on the input image based on the detected objects.
Args:
box: Detected bounding box.
score: Corresponding detection score.
class_id: Class ID for the detected object.
Returns:
None
"""
# Extract the coordinates of the bounding box
x1, y1, x2, y2 = box
# Retrieve the color for the class ID
color = self.color_palette[class_id]
# Draw the bounding box on the image
cv2.rectangle(self.img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
# Create the label text with class name and score
label = f"{self.classes[class_id]}: {score:.2f}"
# Calculate the dimensions of the label text
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
# Calculate the position of the label text
label_x = x1
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
# Draw a filled rectangle as the background for the label text
cv2.rectangle(
self.img, (int(label_x), int(label_y - label_height)), (int(label_x + label_width), int(label_y + label_height)), color, cv2.FILLED
)
# Draw the label text on the image
cv2.putText(self.img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
def preprocess(self):
"""
Preprocesses the input image before performing inference.
Returns:
image_data: Preprocessed image data ready for inference.
"""
# Read the input image using OpenCV
self.img = cv2.imread(self.img_path)
# Get the height and width of the input image
self.img_height, self.img_width = self.img.shape[:2]
# Convert the image color space from BGR to RGB
img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)
# Resize the image to match the input shape
img = cv2.resize(img, (self.input_width, self.input_height))
# Normalize the image data by dividing it by 255.0
image_data = np.array(img) / 255.0
# Transpose the image to have the channel dimension as the first dimension
image_data = np.transpose(image_data, (2, 0, 1)) # Channel first
# Expand the dimensions of the image data to match the expected input shape
image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
# Return the preprocessed image data
return image_data
def bbox_cxcywh_to_xyxy(self, boxes):
"""
Converts bounding boxes from (center x, center y, width, height) format
to (x_min, y_min, x_max, y_max) format.
Args:
boxes (numpy.ndarray): An array of shape (N, 4) where each row represents
a bounding box in (cx, cy, w, h) format.
Returns:
numpy.ndarray: An array of shape (N, 4) where each row represents
a bounding box in (x_min, y_min, x_max, y_max) format.
"""
# Calculate half width and half height of the bounding boxes
half_width = boxes[:, 2] / 2
half_height = boxes[:, 3] / 2
# Calculate the coordinates of the bounding boxes
x_min = boxes[:, 0] - half_width
y_min = boxes[:, 1] - half_height
x_max = boxes[:, 0] + half_width
y_max = boxes[:, 1] + half_height
# Return the bounding boxes in (x_min, y_min, x_max, y_max) format
return np.column_stack((x_min, y_min, x_max, y_max))
def postprocess(self, model_output):
"""
Postprocesses the model output to extract detections and draw them on the input image.
Args:
model_output: Output of the model inference.
Returns:
np.array: Annotated image with detections.
"""
# Squeeze the model output to remove unnecessary dimensions
outputs = np.squeeze(model_output[0])
# Extract bounding boxes and scores from the model output
boxes = outputs[:, :4]
scores = outputs[:, 4:]
# Get the class labels and scores for each detection
labels = np.argmax(scores, axis=1)
scores = np.max(scores, axis=1)
# Apply confidence threshold to filter out low-confidence detections
mask = scores > self.conf_thres
boxes, scores, labels = boxes[mask], scores[mask], labels[mask]
# Convert bounding boxes to (x_min, y_min, x_max, y_max) format
boxes = self.bbox_cxcywh_to_xyxy(boxes)
# Scale bounding boxes to match the original image dimensions
boxes[:, 0::2] *= self.img_width
boxes[:, 1::2] *= self.img_height
# Draw detections on the image
for box, score, label in zip(boxes, scores, labels):
self.draw_detections(box, score, label)
# Return the annotated image
return self.img
def main(self):
"""
Executes the detection on the input image using the ONNX model.
Returns:
np.array: Output image with annotations.
"""
# Preprocess the image for model input
image_data = self.preprocess()
# Run the model inference
model_output = self.session.run(None, {self.model_input[0].name: image_data})
# Process and return the model output
return self.postprocess(model_output)
if __name__ == "__main__":
# Set up argument parser for command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="rtdetr-l.onnx", help="Path to the ONNX model file.")
parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to the input image.")
parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold for object detection.")
parser.add_argument("--iou-thres", type=float, default=0.5, help="IoU threshold for non-maximum suppression.")
args = parser.parse_args()
# Check for dependencies and set up ONNX runtime
check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime")
# Create the detector instance with specified parameters
detection = RTDETR(args.model, args.img, args.conf_thres, args.iou_thres)
# Perform detection and get the output image
output_image = detection.main()
# Display the annotated output image
cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
cv2.imshow("Output", output_image)
cv2.waitKey(0)
Loading…
Cancel
Save