YOLOv8 Counting with Multiple Movable Regions Example (#4929)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/4964/head
Muhammad Rizwan Munawar 1 year ago committed by GitHub
parent 23766e4cf5
commit 5702b2dccd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 1
      examples/README.md
  2. 84
      examples/YOLOv8-Region-Counter/readme.md
  3. 201
      examples/YOLOv8-Region-Counter/yolov8_region_counter.py

@ -15,6 +15,7 @@ This repository features a collection of real-world applications and walkthrough
| [YOLOv8 ONNXRuntime CPP](./YOLOv8-ONNXRuntime-CPP) | C++/ONNXRuntime | [DennisJcy](https://github.com/DennisJcy), [Onuralp Sezer](https://github.com/onuralpszr) |
| [RTDETR ONNXRuntime C#](https://github.com/Kayzwer/yolo-cs/blob/master/RTDETR.cs) | C#/ONNX | [Kayzwer](https://github.com/Kayzwer) |
| [YOLOv8 SAHI Video Inference](https://github.com/RizwanMunawar/ultralytics/blob/main/examples/YOLOv8-SAHI-Inference-Video/yolov8_sahi.py) | Python | [Muhammad Rizwan Munawar](https://github.com/RizwanMunawar) |
| [YOLOv8 Region Counter](https://github.com/RizwanMunawar/ultralytics/blob/main/examples/YOLOv8-Region-Counter/yolov8_region_counter.py) | Python | [Muhammad Rizwan Munawar](https://github.com/RizwanMunawar) |
### How to Contribute

@ -0,0 +1,84 @@
# Regions Counting Using YOLOv8 (Inference on Video)
- Region counting is a method employed to tally the objects within a specified area, allowing for more sophisticated analyses when multiple regions are considered. These regions can be adjusted interactively using a Left Mouse Click, and the counting process occurs in real time.
- Regions can be adjusted to suit the user's preferences and requirements.
<div>
<p align="center">
<img src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/978c8dd4-936d-468e-b41e-1046741ec323" width="45%"/>
<img src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/069fd81b-8451-40f3-9f14-709a7ac097ca" width="45%"/>
&nbsp; &nbsp; &nbsp; &nbsp;
</p>
</div>
## Table of Contents
- [Step 1: Install the Required Libraries](#step-1-install-the-required-libraries)
- [Step 2: Run the Region Counting Using Ultralytics YOLOv8](#step-2-run-the-region-counting-using-ultralytics-yolov8)
- [Usage Options](#usage-options)
- [FAQ](#faq)
## Step 1: Install the Required Libraries
Clone the repository, install dependencies and `cd` to this local directory for commands in Step 2.
```bash
# Clone ultralytics repo
git clone https://github.com/ultralytics/ultralytics
# cd to local directory
cd ultralytics/examples/YOLOv8-Region-Counter
```
## Step 2: Run the Region Counting Using Ultralytics YOLOv8
Here are the basic commands for running the inference:
### Note
After the video begins playing, you can freely move the region anywhere within the video by simply clicking and dragging using the left mouse button.
```bash
# If you want to save results
python yolov8_region_counter.py --source "path/to/video.mp4" --save-img --view-img
# If you want to change model file
python yolov8_region_counter.py --source "path/to/video.mp4" --save-img --weights "path/to/model.pt"
# If you dont want to save results
python yolov8_region_counter.py --source "path/to/video.mp4" --view-img
```
## Usage Options
- `--source`: Specifies the path to the video file you want to run inference on.
- `--save-img`: Flag to save the detection results as images.
- `--weights`: Specifies a different YOLOv8 model file (e.g., `yolov8n.pt`, `yolov8s.pt`, `yolov8m.pt`, `yolov8l.pt`, `yolov8x.pt`).
- `--line-thickness`: Specifies the bounding box thickness
- `--region-thickness`: Specific the region boxes thickness
## FAQ
**1. What Does Region Counting Involve?**
Region counting is a computational method utilized to ascertain the quantity of objects within a specific area in recorded video or real-time streams. This technique finds frequent application in image processing, computer vision, and pattern recognition, facilitating the analysis and segmentation of objects or features based on their spatial relationships.
**2. Why Combine Region Counting with YOLOv8?**
YOLOv8 specializes in the detection and tracking of objects in video streams. Region counting complements this by enabling object counting within designated areas, making it a valuable application of YOLOv8.
**3. How Can I Troubleshoot Issues?**
To gain more insights during inference, you can include the `--debug` flag in your command:
```bash
python yolov8_region_counter.py --source "path to video file" --debug
```
**4. Can I Employ Other YOLO Versions?**
Certainly, you have the flexibility to specify different YOLO model weights using the `--weights` option.
**5. Where Can I Access Additional Information?**
For a comprehensive guide on using YOLOv8 with Object Tracking, please refer to [Multi-Object Tracking with Ultralytics YOLO](https://docs.ultralytics.com/modes/track/).

@ -0,0 +1,201 @@
import argparse
from collections import defaultdict
from pathlib import Path
import cv2
import numpy as np
from ultralytics import YOLO
track_history = defaultdict(lambda: [])
from ultralytics.utils.files import increment_path
from ultralytics.utils.plotting import Annotator, colors
# Region utils
current_region = None
counting_regions = [{
'name': 'YOLOv8 Region A',
'roi': (50, 100, 240, 300),
'counts': 0,
'dragging': False,
'region_color': (0, 255, 0)}, {
'name': 'YOLOv8 Region B',
'roi': (200, 250, 240, 300),
'counts': 0,
'dragging': False,
'region_color': (255, 144, 31)}]
def is_inside_roi(box, roi):
"""Compare bbox with region box."""
x, y, _, _ = box
roi_x, roi_y, roi_w, roi_h = roi
return roi_x < x < roi_x + roi_w and roi_y < y < roi_y + roi_h
def mouse_callback(event, x, y, flags, param):
"""Mouse call back event."""
global current_region
# Mouse left button down event
if event == cv2.EVENT_LBUTTONDOWN:
for region in counting_regions:
roi_x, roi_y, roi_w, roi_h = region['roi']
if roi_x < x < roi_x + roi_w and roi_y < y < roi_y + roi_h:
current_region = region
current_region['dragging'] = True
current_region['offset_x'] = x - roi_x
current_region['offset_y'] = y - roi_y
# Mouse move event
elif event == cv2.EVENT_MOUSEMOVE:
if current_region is not None and current_region['dragging']:
current_region['roi'] = (x - current_region['offset_x'], y - current_region['offset_y'],
current_region['roi'][2], current_region['roi'][3])
# Mouse left button up event
elif event == cv2.EVENT_LBUTTONUP:
if current_region is not None and current_region['dragging']:
current_region['dragging'] = False
def run(weights='yolov8n.pt',
source='test.mp4',
view_img=False,
save_img=False,
exist_ok=False,
line_thickness=2,
region_thickness=2):
"""
Run Region counting on a video using YOLOv8 and ByteTrack.
Supports movable region for real time counting inside specific area.
Supports multiple regions counting.
Args:
weights (str): Model weights path.
source (str): Video file path.
view_img (bool): Show results.
save_img (bool): Save results.
exist_ok (bool): Overwrite existing files.
line_thickness (int): Bounding box thickness.
region_thickness (int): Region thickness.
"""
vid_frame_count = 0
# Check source path
if not Path(source).exists():
raise FileNotFoundError(f"Source path '{source}' does not exist.")
# Setup Model
model = YOLO(f'{weights}')
# Video setup
videocapture = cv2.VideoCapture(source)
frame_width, frame_height = int(videocapture.get(3)), int(videocapture.get(4))
fps, fourcc = int(videocapture.get(5)), cv2.VideoWriter_fourcc(*'mp4v')
# Output setup
save_dir = increment_path(Path('ultralytics_rc_output') / 'exp', exist_ok)
save_dir.mkdir(parents=True, exist_ok=True)
video_writer = cv2.VideoWriter(str(save_dir / f'{Path(source).stem}.mp4'), fourcc, fps, (frame_width, frame_height))
# Iterate over video frames
while videocapture.isOpened():
success, frame = videocapture.read()
if not success:
break
vid_frame_count += 1
# Extract the results
results = model.track(frame, persist=True)
boxes = results[0].boxes.xywh.cpu()
track_ids = results[0].boxes.id.int().cpu().tolist()
clss = results[0].boxes.cls.cpu().tolist()
names = results[0].names
annotator = Annotator(frame, line_width=line_thickness, example=str(names))
for box, track_id, cls in zip(boxes, track_ids, clss):
x, y, w, h = box
label = str(names[cls])
xyxy = (x - w / 2), (y - h / 2), (x + w / 2), (y + h / 2)
# Bounding box
bbox_color = colors(cls, True)
annotator.box_label(xyxy, label, color=bbox_color)
# Tracking Lines
track = track_history[track_id]
track.append((float(x), float(y)))
if len(track) > 30:
track.pop(0)
points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
cv2.polylines(frame, [points], isClosed=False, color=bbox_color, thickness=line_thickness)
# Check If detection inside region
for region in counting_regions:
if is_inside_roi(box, region['roi']):
region['counts'] += 1
# Draw region boxes
for region in counting_regions:
region_label = str(region['counts'])
roi_x, roi_y, roi_w, roi_h = region['roi']
region_color = region['region_color']
center_x = roi_x + roi_w // 2
center_y = roi_y + roi_h // 2
text_margin = 15
# Region plotting
cv2.rectangle(frame, (roi_x, roi_y), (roi_x + roi_w, roi_y + roi_h), region_color, region_thickness)
t_size, _ = cv2.getTextSize(region_label, cv2.FONT_HERSHEY_SIMPLEX, fontScale=1.0, thickness=line_thickness)
text_x = center_x - t_size[0] // 2 - text_margin
text_y = center_y + t_size[1] // 2 + text_margin
cv2.rectangle(frame, (text_x - text_margin, text_y - t_size[1] - text_margin),
(text_x + t_size[0] + text_margin, text_y + text_margin), region_color, -1)
cv2.putText(frame, region_label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), line_thickness)
if view_img:
if vid_frame_count == 1:
cv2.namedWindow('Ultralytics YOLOv8 Region Counter Movable')
cv2.setMouseCallback('Ultralytics YOLOv8 Region Counter Movable', mouse_callback)
cv2.imshow('Ultralytics YOLOv8 Region Counter Movable', frame)
if save_img:
video_writer.write(frame)
for region in counting_regions: # Reinitialize count for each region
region['counts'] = 0
if cv2.waitKey(1) & 0xFF == ord('q'):
break
del vid_frame_count
video_writer.release()
videocapture.release()
cv2.destroyAllWindows()
def parse_opt():
"""Parse command line arguments."""
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov8n.pt', help='initial weights path')
parser.add_argument('--source', type=str, required=True, help='video file path')
parser.add_argument('--view-img', action='store_true', help='show results')
parser.add_argument('--save-img', action='store_true', help='save results')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', type=int, default=2, help='bounding box thickness')
parser.add_argument('--region-thickness', type=int, default=4, help='Region thickness')
return parser.parse_args()
def main(opt):
"""Main function."""
run(**vars(opt))
if __name__ == '__main__':
opt = parse_opt()
main(opt)
Loading…
Cancel
Save