diff --git a/docs/en/reference/utils/ops.md b/docs/en/reference/utils/ops.md
index b62ba7b4e..ab6cafbca 100644
--- a/docs/en/reference/utils/ops.md
+++ b/docs/en/reference/utils/ops.md
@@ -129,4 +129,8 @@ keywords: Ultralytics, utility operations, non-max suppression, bounding box tra
## ::: ultralytics.utils.ops.clean_str
+
+
+## ::: ultralytics.utils.ops.empty_like
+
diff --git a/ultralytics/utils/ops.py b/ultralytics/utils/ops.py
index 50c861de1..9a05b3a8b 100644
--- a/ultralytics/utils/ops.py
+++ b/ultralytics/utils/ops.py
@@ -400,7 +400,7 @@ def xyxy2xywh(x):
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height) format.
"""
assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}"
- y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy
+ y = empty_like(x) # faster than clone/copy
y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center
y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center
y[..., 2] = x[..., 2] - x[..., 0] # width
@@ -420,7 +420,7 @@ def xywh2xyxy(x):
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format.
"""
assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}"
- y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy
+ y = empty_like(x) # faster than clone/copy
xy = x[..., :2] # centers
wh = x[..., 2:] / 2 # half width-height
y[..., :2] = xy - wh # top left xy
@@ -443,7 +443,7 @@ def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
x1,y1 is the top-left corner, x2,y2 is the bottom-right corner of the bounding box.
"""
assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}"
- y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy
+ y = empty_like(x) # faster than clone/copy
y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x
y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y
y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x
@@ -469,7 +469,7 @@ def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
if clip:
x = clip_boxes(x, (h - eps, w - eps))
assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}"
- y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x, dtype=float) # faster than clone/copy
+ y = empty_like(x) # faster than clone/copy
y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center
y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center
y[..., 2] = (x[..., 2] - x[..., 0]) / w # width
@@ -838,3 +838,10 @@ def clean_str(s):
(str): a string with special characters replaced by an underscore _
"""
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
+
+
+def empty_like(x):
+ """Creates empty torch.Tensor or np.ndarray with same shape as input and float32 dtype."""
+ return (
+ torch.empty_like(x, dtype=torch.float32) if isinstance(x, torch.Tensor) else np.empty_like(x, dtype=np.float32)
+ )