|
|
|
@ -400,7 +400,7 @@ def xyxy2xywh(x): |
|
|
|
|
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height) format. |
|
|
|
|
""" |
|
|
|
|
assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}" |
|
|
|
|
y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy |
|
|
|
|
y = empty_like(x) # faster than clone/copy |
|
|
|
|
y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center |
|
|
|
|
y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center |
|
|
|
|
y[..., 2] = x[..., 2] - x[..., 0] # width |
|
|
|
@ -420,7 +420,7 @@ def xywh2xyxy(x): |
|
|
|
|
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format. |
|
|
|
|
""" |
|
|
|
|
assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}" |
|
|
|
|
y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy |
|
|
|
|
y = empty_like(x) # faster than clone/copy |
|
|
|
|
xy = x[..., :2] # centers |
|
|
|
|
wh = x[..., 2:] / 2 # half width-height |
|
|
|
|
y[..., :2] = xy - wh # top left xy |
|
|
|
@ -443,7 +443,7 @@ def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): |
|
|
|
|
x1,y1 is the top-left corner, x2,y2 is the bottom-right corner of the bounding box. |
|
|
|
|
""" |
|
|
|
|
assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}" |
|
|
|
|
y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy |
|
|
|
|
y = empty_like(x) # faster than clone/copy |
|
|
|
|
y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x |
|
|
|
|
y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y |
|
|
|
|
y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x |
|
|
|
@ -469,7 +469,7 @@ def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0): |
|
|
|
|
if clip: |
|
|
|
|
x = clip_boxes(x, (h - eps, w - eps)) |
|
|
|
|
assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}" |
|
|
|
|
y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x, dtype=float) # faster than clone/copy |
|
|
|
|
y = empty_like(x) # faster than clone/copy |
|
|
|
|
y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center |
|
|
|
|
y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center |
|
|
|
|
y[..., 2] = (x[..., 2] - x[..., 0]) / w # width |
|
|
|
@ -838,3 +838,10 @@ def clean_str(s): |
|
|
|
|
(str): a string with special characters replaced by an underscore _ |
|
|
|
|
""" |
|
|
|
|
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def empty_like(x): |
|
|
|
|
"""Creates empty torch.Tensor or np.ndarray with same shape as input and float32 dtype.""" |
|
|
|
|
return ( |
|
|
|
|
torch.empty_like(x, dtype=torch.float32) if isinstance(x, torch.Tensor) else np.empty_like(x, dtype=np.float32) |
|
|
|
|
) |
|
|
|
|