@ -19,9 +19,8 @@ The output of an oriented object detector is a set of rotated bounding boxes tha
YOLOv8 OBB models use the `-obb` suffix, i.e. `yolov8n-obb.pt` and are pretrained on [DOTAv1 ](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml ).
< table >
< tr >
< td align = "center" >
< p align = "center" >
< br >
< iframe loading = "lazy" width = "720" height = "405" src = "https://www.youtube.com/embed/Z7Z9pHF8wJc"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
@ -29,18 +28,7 @@ The output of an oriented object detector is a set of rotated bounding boxes tha
< / iframe >
< br >
< strong > Watch:< / strong > Object Detection using Ultralytics YOLOv8 Oriented Bounding Boxes (YOLOv8-OBB)
< / td >
< td align = "center" >
< iframe loading = "lazy" width = "720" height = "405" src = "https://www.youtube.com/embed/uZ7SymQfqKI"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
< / iframe >
< br >
< strong > Watch:< / strong > Object Detection with YOLOv8-OBB using Ultralytics HUB
< / td >
< / tr >
< / table >
< / p >
## Visual Samples
@ -98,6 +86,17 @@ Train YOLOv8n-obb on the `dota8.yaml` dataset for 100 epochs at image size 640.
yolo obb train data=dota8.yaml model=yolov8n-obb.yaml pretrained=yolov8n-obb.pt epochs=100 imgsz=640
```
< p align = "center" >
< br >
< iframe loading = "lazy" width = "720" height = "405" src = "https://www.youtube.com/embed/uZ7SymQfqKI"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
< / iframe >
< br >
< strong > Watch:< / strong > How to Train Ultralytics YOLOv8-OBB (Oriented Bounding Boxes) Models on DOTA Dataset using Ultralytics HUB
< / p >
### Dataset format
OBB dataset format can be found in detail in the [Dataset Guide ](../datasets/obb/index.md ).
@ -158,6 +157,17 @@ Use a trained YOLOv8n-obb model to run predictions on images.
yolo obb predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
```
< p align = "center" >
< br >
< iframe loading = "lazy" width = "720" height = "405" src = "https://www.youtube.com/embed/5XYdm5CYODA"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
< / iframe >
< br >
< strong > Watch:< / strong > How to Detect and Track Storage Tanks using Ultralytics YOLOv8-OBB | Oriented Bounding Boxes | DOTA
< / p >
See full `predict` mode details in the [Predict ](../modes/predict.md ) page.
## Export