|
|
|
@ -1111,6 +1111,20 @@ class Exporter: |
|
|
|
|
mct.exporter.pytorch_export_model( |
|
|
|
|
model=quant_model_pp, save_model_path=f, repr_dataset=representative_dataset_gen |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
n_gptq_epochs = 1000 |
|
|
|
|
gptq_config = mct.gptq.get_pytorch_gptq_config(n_epochs=n_gptq_epochs, use_hessian_based_weights=False) |
|
|
|
|
|
|
|
|
|
# Perform Gradient-Based Post Training Quantization |
|
|
|
|
gptq_quant_model, _ = mct.gptq.pytorch_gradient_post_training_quantization( |
|
|
|
|
model=self.model, |
|
|
|
|
representative_data_gen=representative_dataset_gen, |
|
|
|
|
target_resource_utilization=resource_utilization, |
|
|
|
|
gptq_config=gptq_config, |
|
|
|
|
core_config=config, |
|
|
|
|
target_platform_capabilities=tpc) |
|
|
|
|
|
|
|
|
|
print('Quantized-GPTQ model is ready') |
|
|
|
|
|
|
|
|
|
return f, None |
|
|
|
|
|
|
|
|
|