|
|
|
@ -1,44 +1,120 @@ |
|
|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
|
from ultralytics.yolo.cfg import TASK2DATA, TASK2METRIC |
|
|
|
|
from ultralytics.yolo.utils import DEFAULT_CFG_DICT, LOGGER, NUM_THREADS |
|
|
|
|
|
|
|
|
|
from ultralytics.yolo.utils import LOGGER |
|
|
|
|
|
|
|
|
|
try: |
|
|
|
|
from ray import tune |
|
|
|
|
from ray.air import RunConfig, session # noqa |
|
|
|
|
from ray.air.integrations.wandb import WandbLoggerCallback # noqa |
|
|
|
|
from ray.tune.schedulers import ASHAScheduler # noqa |
|
|
|
|
from ray.tune.schedulers import AsyncHyperBandScheduler as AHB # noqa |
|
|
|
|
|
|
|
|
|
except ImportError: |
|
|
|
|
LOGGER.info("Tuning hyperparameters requires ray/tune. Install using `pip install 'ray[tune]'`") |
|
|
|
|
tune = None |
|
|
|
|
|
|
|
|
|
default_space = { |
|
|
|
|
# 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']), |
|
|
|
|
'lr0': tune.uniform(1e-5, 1e-1), |
|
|
|
|
'lrf': tune.uniform(0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) |
|
|
|
|
'momentum': tune.uniform(0.6, 0.98), # SGD momentum/Adam beta1 |
|
|
|
|
'weight_decay': tune.uniform(0.0, 0.001), # optimizer weight decay 5e-4 |
|
|
|
|
'warmup_epochs': tune.uniform(0.0, 5.0), # warmup epochs (fractions ok) |
|
|
|
|
'warmup_momentum': tune.uniform(0.0, 0.95), # warmup initial momentum |
|
|
|
|
'box': tune.uniform(0.02, 0.2), # box loss gain |
|
|
|
|
'cls': tune.uniform(0.2, 4.0), # cls loss gain (scale with pixels) |
|
|
|
|
'hsv_h': tune.uniform(0.0, 0.1), # image HSV-Hue augmentation (fraction) |
|
|
|
|
'hsv_s': tune.uniform(0.0, 0.9), # image HSV-Saturation augmentation (fraction) |
|
|
|
|
'hsv_v': tune.uniform(0.0, 0.9), # image HSV-Value augmentation (fraction) |
|
|
|
|
'degrees': tune.uniform(0.0, 45.0), # image rotation (+/- deg) |
|
|
|
|
'translate': tune.uniform(0.0, 0.9), # image translation (+/- fraction) |
|
|
|
|
'scale': tune.uniform(0.0, 0.9), # image scale (+/- gain) |
|
|
|
|
'shear': tune.uniform(0.0, 10.0), # image shear (+/- deg) |
|
|
|
|
'perspective': tune.uniform(0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 |
|
|
|
|
'flipud': tune.uniform(0.0, 1.0), # image flip up-down (probability) |
|
|
|
|
'fliplr': tune.uniform(0.0, 1.0), # image flip left-right (probability) |
|
|
|
|
'mosaic': tune.uniform(0.0, 1.0), # image mixup (probability) |
|
|
|
|
'mixup': tune.uniform(0.0, 1.0), # image mixup (probability) |
|
|
|
|
'copy_paste': tune.uniform(0.0, 1.0)} # segment copy-paste (probability) |
|
|
|
|
|
|
|
|
|
task_metric_map = { |
|
|
|
|
'detect': 'metrics/mAP50-95(B)', |
|
|
|
|
'segment': 'metrics/mAP50-95(M)', |
|
|
|
|
'classify': 'metrics/accuracy_top1', |
|
|
|
|
'pose': 'metrics/mAP50-95(P)'} |
|
|
|
|
|
|
|
|
|
def run_ray_tune(model, |
|
|
|
|
space: dict = None, |
|
|
|
|
grace_period: int = 10, |
|
|
|
|
gpu_per_trial: int = None, |
|
|
|
|
max_samples: int = 10, |
|
|
|
|
**train_args): |
|
|
|
|
""" |
|
|
|
|
Runs hyperparameter tuning using Ray Tune. |
|
|
|
|
|
|
|
|
|
Args: |
|
|
|
|
model (YOLO): Model to run the tuner on. |
|
|
|
|
space (dict, optional): The hyperparameter search space. Defaults to None. |
|
|
|
|
grace_period (int, optional): The grace period in epochs of the ASHA scheduler. Defaults to 10. |
|
|
|
|
gpu_per_trial (int, optional): The number of GPUs to allocate per trial. Defaults to None. |
|
|
|
|
max_samples (int, optional): The maximum number of trials to run. Defaults to 10. |
|
|
|
|
train_args (dict, optional): Additional arguments to pass to the `train()` method. Defaults to {}. |
|
|
|
|
|
|
|
|
|
Returns: |
|
|
|
|
(dict): A dictionary containing the results of the hyperparameter search. |
|
|
|
|
|
|
|
|
|
Raises: |
|
|
|
|
ModuleNotFoundError: If Ray Tune is not installed. |
|
|
|
|
""" |
|
|
|
|
if train_args is None: |
|
|
|
|
train_args = {} |
|
|
|
|
|
|
|
|
|
try: |
|
|
|
|
from ray import tune |
|
|
|
|
from ray.air import RunConfig |
|
|
|
|
from ray.air.integrations.wandb import WandbLoggerCallback |
|
|
|
|
from ray.tune.schedulers import ASHAScheduler |
|
|
|
|
except ImportError: |
|
|
|
|
raise ModuleNotFoundError("Tuning hyperparameters requires Ray Tune. Install with: pip install 'ray[tune]'") |
|
|
|
|
|
|
|
|
|
try: |
|
|
|
|
import wandb |
|
|
|
|
|
|
|
|
|
assert hasattr(wandb, '__version__') |
|
|
|
|
except (ImportError, AssertionError): |
|
|
|
|
wandb = False |
|
|
|
|
|
|
|
|
|
default_space = { |
|
|
|
|
# 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']), |
|
|
|
|
'lr0': tune.uniform(1e-5, 1e-1), |
|
|
|
|
'lrf': tune.uniform(0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) |
|
|
|
|
'momentum': tune.uniform(0.6, 0.98), # SGD momentum/Adam beta1 |
|
|
|
|
'weight_decay': tune.uniform(0.0, 0.001), # optimizer weight decay 5e-4 |
|
|
|
|
'warmup_epochs': tune.uniform(0.0, 5.0), # warmup epochs (fractions ok) |
|
|
|
|
'warmup_momentum': tune.uniform(0.0, 0.95), # warmup initial momentum |
|
|
|
|
'box': tune.uniform(0.02, 0.2), # box loss gain |
|
|
|
|
'cls': tune.uniform(0.2, 4.0), # cls loss gain (scale with pixels) |
|
|
|
|
'hsv_h': tune.uniform(0.0, 0.1), # image HSV-Hue augmentation (fraction) |
|
|
|
|
'hsv_s': tune.uniform(0.0, 0.9), # image HSV-Saturation augmentation (fraction) |
|
|
|
|
'hsv_v': tune.uniform(0.0, 0.9), # image HSV-Value augmentation (fraction) |
|
|
|
|
'degrees': tune.uniform(0.0, 45.0), # image rotation (+/- deg) |
|
|
|
|
'translate': tune.uniform(0.0, 0.9), # image translation (+/- fraction) |
|
|
|
|
'scale': tune.uniform(0.0, 0.9), # image scale (+/- gain) |
|
|
|
|
'shear': tune.uniform(0.0, 10.0), # image shear (+/- deg) |
|
|
|
|
'perspective': tune.uniform(0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 |
|
|
|
|
'flipud': tune.uniform(0.0, 1.0), # image flip up-down (probability) |
|
|
|
|
'fliplr': tune.uniform(0.0, 1.0), # image flip left-right (probability) |
|
|
|
|
'mosaic': tune.uniform(0.0, 1.0), # image mixup (probability) |
|
|
|
|
'mixup': tune.uniform(0.0, 1.0), # image mixup (probability) |
|
|
|
|
'copy_paste': tune.uniform(0.0, 1.0)} # segment copy-paste (probability) |
|
|
|
|
|
|
|
|
|
def _tune(config): |
|
|
|
|
""" |
|
|
|
|
Trains the YOLO model with the specified hyperparameters and additional arguments. |
|
|
|
|
|
|
|
|
|
Args: |
|
|
|
|
config (dict): A dictionary of hyperparameters to use for training. |
|
|
|
|
|
|
|
|
|
Returns: |
|
|
|
|
None. |
|
|
|
|
""" |
|
|
|
|
model._reset_callbacks() |
|
|
|
|
config.update(train_args) |
|
|
|
|
model.train(**config) |
|
|
|
|
|
|
|
|
|
# Get search space |
|
|
|
|
if not space: |
|
|
|
|
space = default_space |
|
|
|
|
LOGGER.warning('WARNING ⚠️ search space not provided, using default search space.') |
|
|
|
|
|
|
|
|
|
# Get dataset |
|
|
|
|
data = train_args.get('data', TASK2DATA[model.task]) |
|
|
|
|
space['data'] = data |
|
|
|
|
if 'data' not in train_args: |
|
|
|
|
LOGGER.warning(f'WARNING ⚠️ data not provided, using default "data={data}".') |
|
|
|
|
|
|
|
|
|
# Define the trainable function with allocated resources |
|
|
|
|
trainable_with_resources = tune.with_resources(_tune, {'cpu': NUM_THREADS, 'gpu': gpu_per_trial or 0}) |
|
|
|
|
|
|
|
|
|
# Define the ASHA scheduler for hyperparameter search |
|
|
|
|
asha_scheduler = ASHAScheduler(time_attr='epoch', |
|
|
|
|
metric=TASK2METRIC[model.task], |
|
|
|
|
mode='max', |
|
|
|
|
max_t=train_args.get('epochs') or DEFAULT_CFG_DICT['epochs'] or 100, |
|
|
|
|
grace_period=grace_period, |
|
|
|
|
reduction_factor=3) |
|
|
|
|
|
|
|
|
|
# Define the callbacks for the hyperparameter search |
|
|
|
|
tuner_callbacks = [WandbLoggerCallback(project='YOLOv8-tune')] if wandb else [] |
|
|
|
|
|
|
|
|
|
# Create the Ray Tune hyperparameter search tuner |
|
|
|
|
tuner = tune.Tuner(trainable_with_resources, |
|
|
|
|
param_space=space, |
|
|
|
|
tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples), |
|
|
|
|
run_config=RunConfig(callbacks=tuner_callbacks, storage_path='./runs/tune')) |
|
|
|
|
|
|
|
|
|
# Run the hyperparameter search |
|
|
|
|
tuner.fit() |
|
|
|
|
|
|
|
|
|
# Return the results of the hyperparameter search |
|
|
|
|
return tuner.get_results() |
|
|
|
|