Create [embeddings](https://www.ultralytics.com/glossary/embeddings) for your dataset, search for similar images, run SQL queries, perform semantic search and even search using natural language! You can get started with our GUI app or build your own using the API. Learn more [here](explorer/index.md).
@ -58,7 +58,7 @@ Explore the Ultralytics Docs, a comprehensive resource designed to help you unde
- **Predict** new images and videos with YOLO [:octicons-image-16: Predict on Images](modes/predict.md){ .md-button }
- **Train** a new YOLO model on your own custom dataset [:fontawesome-solid-brain: Train a Model](modes/train.md){ .md-button }
- **Tasks** YOLO tasks like segment, classify, pose and track [:material-magnify-expand: Explore Tasks](tasks/index.md){ .md-button }
- **[YOLO11](models/yolo11.md) NEW 🚀**: Ultralytics' latest SOTA models [:material-magnify-expand: Explore new YOLO11 models](models/yolo11.md){ .md-button }
- **[YOLO11](models/yolo11.md) 🚀 NEW**: Ultralytics' latest SOTA models [:material-magnify-expand: Explore new YOLO11 models](models/yolo11.md){ .md-button }
<palign="center">
<br>
@ -84,7 +84,7 @@ Explore the Ultralytics Docs, a comprehensive resource designed to help you unde
- [YOLOv8](https://github.com/ultralytics/ultralytics) released in 2023 by Ultralytics. YOLOv8 introduced new features and improvements for enhanced performance, flexibility, and efficiency, supporting a full range of vision AI tasks,
- [YOLOv9](models/yolov9.md) introduces innovative methods like Programmable Gradient Information (PGI) and the Generalized Efficient Layer Aggregation Network (GELAN).
- [YOLOv10](models/yolov10.md) is created by researchers from [Tsinghua University](https://www.tsinghua.edu.cn/en/) using the [Ultralytics](https://www.ultralytics.com/) [Python package](https://pypi.org/project/ultralytics/). This version provides real-time [object detection](tasks/detect.md) advancements by introducing an End-to-End head that eliminates Non-Maximum Suppression (NMS) requirements.
- **[YOLO11](models/yolo11.md) NEW 🚀**: Ultralytics' latest YOLO models delivering state-of-the-art (SOTA) performance across multiple tasks, including [detection](tasks/detect.md), [segmentation](tasks/segment.md), [pose estimation](tasks/pose.md), [tracking](modes/track.md), and [classification](tasks/classify.md), leverage capabilities across diverse AI applications and domains.
- **[YOLO11](models/yolo11.md) 🚀 NEW**: Ultralytics' latest YOLO models delivering state-of-the-art (SOTA) performance across multiple tasks, including [detection](tasks/detect.md), [segmentation](tasks/segment.md), [pose estimation](tasks/pose.md), [tracking](modes/track.md), and [classification](tasks/classify.md), leverage capabilities across diverse AI applications and domains.
## YOLO Licenses: How is Ultralytics YOLO licensed?
@ -22,7 +22,7 @@ Here are some of the key models supported:
6. **[YOLOv8](yolov8.md)**: The latest version of the YOLO family, featuring enhanced capabilities such as [instance segmentation](https://www.ultralytics.com/glossary/instance-segmentation), pose/keypoints estimation, and classification.
7. **[YOLOv9](yolov9.md)**: An experimental model trained on the Ultralytics [YOLOv5](yolov5.md) codebase implementing Programmable Gradient Information (PGI).
8. **[YOLOv10](yolov10.md)**: By Tsinghua University, featuring NMS-free training and efficiency-accuracy driven architecture, delivering state-of-the-art performance and latency.
9. **[YOLO11](yolo11.md) NEW 🚀**: Ultralytics' latest YOLO models delivering state-of-the-art (SOTA) performance across multiple tasks.