YOLO may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
- **Notebooks**with free GPU:<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a> <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- **Notebooks**with free GPU:<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a> <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/models/ultralytics/yolo11"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- **GoogleCloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)
- **Amazon**Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)
<ahref="https://console.paperspace.com/github/ultralytics/ultralytics"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run Ultralytics on Gradient"></a>
<ahref="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open Ultralytics In Colab"></a>
<ahref="https://www.kaggle.com/ultralytics/yolov8"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open Ultralytics In Kaggle"></a>
<ahref="https://www.kaggle.com/models/ultralytics/yolo11"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open Ultralytics In Kaggle"></a>
</div>
<br>
@ -26,7 +26,7 @@ We hope that the resources here will help you get the most out of YOLO. Please b
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
@ -116,7 +116,7 @@ See YOLO [Python Docs](https://docs.ultralytics.com/usage/python/) for more exam
YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models.
All [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
@ -207,7 +207,7 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
## <divalign="center">Integrations</div>
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [W&B](https://docs.wandb.ai/guides/integrations/ultralytics/), [Comet](https://bit.ly/yolov8-readme-comet), [Roboflow](https://roboflow.com/?ref=ultralytics) and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
| Label and export your custom datasets directly to YOLO11 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLO11 using [ClearML](https://clear.ml/) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLO11 models, resume training, and interactively visualize and debug predictions | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
| Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://www.ultralytics.com/hub). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.wandb.ai/guides/integrations/ultralytics/) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLO11 models, resume training, and interactively visualize and debug predictions | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
<ahref="https://console.paperspace.com/github/ultralytics/ultralytics"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run Ultralytics on Gradient"></a>
<ahref="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open Ultralytics In Colab"></a>
<ahref="https://www.kaggle.com/ultralytics/yolov8"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open Ultralytics In Kaggle"></a>
<ahref="https://www.kaggle.com/models/ultralytics/yolo11"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open Ultralytics In Kaggle"></a>
| Label and export your custom datasets directly to YOLO11 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLO11 using [ClearML](https://clear.ml/) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLO11 models, resume training, and interactively visualize and debug predictions | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
The [MNIST](http://yann.lecun.com/exdb/mnist/) (Modified National Institute of Standards and Technology) dataset is a large database of handwritten digits that is commonly used for training various image processing systems and machine learning models. It was created by "re-mixing" the samples from NIST's original datasets and has become a benchmark for evaluating the performance of image classification algorithms.
The [MNIST](https://en.wikipedia.org/wiki/MNIST_database) (Modified National Institute of Standards and Technology) dataset is a large database of handwritten digits that is commonly used for training various image processing systems and machine learning models. It was created by "re-mixing" the samples from NIST's original datasets and has become a benchmark for evaluating the performance of image classification algorithms.
## Key Features
@ -83,13 +83,13 @@ research or development work, please cite the following paper:
}
```
We would like to acknowledge Yann LeCun, Corinna Cortes, and Christopher J.C. Burges for creating and maintaining the MNIST dataset as a valuable resource for the [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) and [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) research community. For more information about the MNIST dataset and its creators, visit the [MNIST dataset website](http://yann.lecun.com/exdb/mnist/).
We would like to acknowledge Yann LeCun, Corinna Cortes, and Christopher J.C. Burges for creating and maintaining the MNIST dataset as a valuable resource for the [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) and [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) research community. For more information about the MNIST dataset and its creators, visit the [MNIST dataset website](https://en.wikipedia.org/wiki/MNIST_database).
## FAQ
### What is the MNIST dataset, and why is it important in machine learning?
The [MNIST](http://yann.lecun.com/exdb/mnist/) dataset, or Modified National Institute of Standards and Technology dataset, is a widely-used collection of handwritten digits designed for training and testing image classification systems. It includes 60,000 training images and 10,000 testing images, all of which are grayscale and 28x28 pixels in size. The dataset's importance lies in its role as a standard benchmark for evaluating image classification algorithms, helping researchers and engineers to compare methods and track progress in the field.
The [MNIST](https://en.wikipedia.org/wiki/MNIST_database) dataset, or Modified National Institute of Standards and Technology dataset, is a widely-used collection of handwritten digits designed for training and testing image classification systems. It includes 60,000 training images and 10,000 testing images, all of which are grayscale and 28x28 pixels in size. The dataset's importance lies in its role as a standard benchmark for evaluating image classification algorithms, helping researchers and engineers to compare methods and track progress in the field.
### How can I use Ultralytics YOLO to train a model on the MNIST dataset?
" <a href=\"https://console.paperspace.com/github/ultralytics/ultralytics\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"/></a>\n",
" <a href=\"https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
" <a href=\"https://www.kaggle.com/ultralytics/yolov8\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
" <a href=\"https://www.kaggle.com/models/ultralytics/yolo11\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
"\n",
"Welcome to the Ultralytics Explorer API notebook! This notebook serves as the starting point for exploring the various resources available to help you get started with using Ultralytics to explore your datasets using with the power of semantic search. You can utilities out of the box that allow you to examine specific types of labels using vector search or even SQL queries.\n",
@ -46,7 +46,7 @@ Create [embeddings](https://www.ultralytics.com/glossary/embeddings) for your da
- [VisDrone](detect/visdrone.md): A dataset containing object detection and multi-object tracking data from drone-captured imagery with over 10K images and video sequences.
- [VOC](detect/voc.md): The Pascal Visual Object Classes (VOC) dataset for object detection and segmentation with 20 object classes and over 11K images.
- [xView](detect/xview.md): A dataset for object detection in overhead imagery with 60 object categories and over 1 million annotated objects.
- [Roboflow 100](detect/roboflow-100.md): A diverse object detection benchmark with 100 datasets spanning seven imagery domains for comprehensive model evaluation.
- [RF100](detect/roboflow-100.md): A diverse object detection benchmark with 100 datasets spanning seven imagery domains for comprehensive model evaluation.
- [Brain-tumor](detect/brain-tumor.md): A dataset for detecting brain tumors includes MRI or CT scan images with details on tumor presence, location, and characteristics.
- [African-wildlife](detect/african-wildlife.md): A dataset featuring images of African wildlife, including buffalo, elephant, rhino, and zebras.
- [Signature](detect/signature.md): A dataset featuring images of various documents with annotated signatures, supporting document verification and fraud detection research.
@ -27,7 +27,7 @@ The Coral Edge TPU is a compact device that adds an Edge TPU coprocessor to your
## Boost Raspberry Pi Model Performance with Coral Edge TPU
Many people want to run their models on an embedded or mobile device such as a Raspberry Pi, since they are very power efficient and can be used in many different applications. However, the inference performance on these devices is usually poor even when using formats like [onnx](../integrations/onnx.md) or [openvino](../integrations/openvino.md). The Coral Edge TPU is a great solution to this problem, since it can be used with a Raspberry Pi and accelerate inference performance greatly.
Many people want to run their models on an embedded or mobile device such as a Raspberry Pi, since they are very power efficient and can be used in many different applications. However, the inference performance on these devices is usually poor even when using formats like [ONNX](../integrations/onnx.md) or [OpenVINO](../integrations/openvino.md). The Coral Edge TPU is a great solution to this problem, since it can be used with a Raspberry Pi and accelerate inference performance greatly.
## Edge TPU on Raspberry Pi with TensorFlow Lite (New)⭐
@ -85,7 +85,7 @@ After installing the runtime, you need to plug in your Coral Edge TPU into a USB
To use the Edge TPU, you need to convert your model into a compatible format. It is recommended that you run export on Google Colab, x86_64 Linux machine, using the official [Ultralytics Docker container](docker-quickstart.md), or using [Ultralytics HUB](../hub/quickstart.md), since the Edge TPU compiler is not available on ARM. See the [Export Mode](../modes/export.md) for the available arguments.
!!! note "Exporting the model"
!!! example "Exporting the model"
=== "Python"
@ -105,13 +105,27 @@ To use the Edge TPU, you need to convert your model into a compatible format. It
yolo export model=path/to/model.pt format=edgetpu # Export an official model or custom model
```
The exported model will be saved in the `<model_name>_saved_model/` folder with the name `<model_name>_full_integer_quant_edgetpu.tflite`.
The exported model will be saved in the `<model_name>_saved_model/` folder with the name `<model_name>_full_integer_quant_edgetpu.tflite`. It is important that your model ends with the suffix `_edgetpu.tflite`, otherwise ultralytics doesn't know that you're using a Edge TPU model.
## Running the model
After exporting your model, you can run inference with it using the following code:
Before you can actually run the model, you will need to install the correct libraries.
!!! note "Running the model"
If `tensorflow` is installed, uninstall tensorflow with the following command:
```bash
pip uninstall tensorflow tensorflow-aarch64
```
Then install/update `tflite-runtime`:
```bash
pip install -U tflite-runtime
```
Now you can run inference using the following code:
!!! example "Running the model"
=== "Python"
@ -119,7 +133,7 @@ After exporting your model, you can run inference with it using the following co
from ultralytics import YOLO
# Load a model
model = YOLO("path/to/edgetpu_model.tflite") # Load an official model or custom model
model = YOLO("path/to/<model_name>_full_integer_quant_edgetpu.tflite") # Load an official model or custom model
# Run Prediction
model.predict("path/to/source.png")
@ -128,27 +142,30 @@ After exporting your model, you can run inference with it using the following co
=== "CLI"
```bash
yolo predict model=path/to/edgetpu_model.tflite source=path/to/source.png # Load an official model or custom model
yolo predict model=path/to/<model_name>_full_integer_quant_edgetpu.tflite source=path/to/source.png # Load an official model or custom model
```
Find comprehensive information on the [Predict](../modes/predict.md) page for full prediction mode details.
???+ warning "Important"
!!! note "Inference with multiple Edge TPUs"
You should run the model using `tflite-runtime` and not `tensorflow`.
If `tensorflow` is installed, uninstall tensorflow with the following command:
If you have multiple Edge TPUs you can use the following code to select a specific TPU.
```bash
pip uninstall tensorflow tensorflow-aarch64
```
=== "Python"
```python
from ultralytics import YOLO
Then install/update `tflite-runtime`:
# Load a model
model = YOLO("path/to/<model_name>_full_integer_quant_edgetpu.tflite") # Load an official model or custom model
```
pip install -U tflite-runtime
```
# Run Prediction
model.predict("path/to/source.png") # Inference defaults to the first TPU
model.predict("path/to/source.png", device="tpu:0") # Select the first TPU
If you want a `tflite-runtime` wheel for `tensorflow` 2.15.0 download it from [here](https://github.com/feranick/TFlite-builds/releases) and install it using `pip` or your package manager of choice.
model.predict("path/to/source.png", device="tpu:1") # Select the second TPU
@ -18,7 +18,7 @@ One of the most important steps when working on a [computer vision project](./st
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Model Training Tips | How to Handle Large Datasets | Batch Size, GPU Utilization and [Mixed Precision](https://www.ultralytics.com/glossary/mixed-precision)
<strong>Watch:</strong> Model Training Tips | How to Handle Large Datasets | Batch Size, GPU Utilization and <ahref="https://www.ultralytics.com/glossary/mixed-precision">Mixed Precision</a>
</p>
So, what is [model training](../modes/train.md)? Model training is the process of teaching your model to recognize visual patterns and make predictions based on your data. It directly impacts the performance and accuracy of your application. In this guide, we'll cover best practices, optimization techniques, and troubleshooting tips to help you train your computer vision models effectively.
Out of all the model export formats supported by Ultralytics, TensorRT delivers the best inference performance when working with NVIDIA Jetson devices and our recommendation is to use TensorRT with Jetson. We also have a detailed document on TensorRT [here](../integrations/tensorrt.md).
## Convert Model to TensorRT and Run Inference
### Convert Model to TensorRT and Run Inference
The YOLOv8n model in PyTorch format is converted to TensorRT to run inference with the exported model.
@ -254,7 +254,7 @@ The YOLOv8n model in PyTorch format is converted to TensorRT to run inference wi
[NVIDIA Deep Learning Accelerator (DLA)](https://developer.nvidia.com/deep-learning-accelerator) is a specialized hardware component built into NVIDIA Jetson devices that optimizes deep learning inference for energy efficiency and performance. By offloading tasks from the GPU (freeing it up for more intensive processes), DLA enables models to run with lower power consumption while maintaining high throughput, ideal for embedded systems and real-time AI applications.
The following Jetson devices are equipped with DLA hardware:
- Jetson Orin NX 16GB
- Jetson AGX Orin Series
- Jetson AGX Xavier Series
- Jetson Xavier NX Series
!!! example
=== "Python"
```python
from ultralytics import YOLO
# Load a YOLOv8n PyTorch model
model = YOLO("yolov8n.pt")
# Export the model to TensorRT with DLA enabled (only works with FP16 or INT8)
model.export(format="engine", device="dla:0", half=True) # dla:0 or dla:1 corresponds to the DLA cores
@ -18,15 +18,11 @@ Computer vision is a subfield of [artificial intelligence](https://www.ultralyti
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> How to Do [Computer Vision](https://www.ultralytics.com/glossary/computer-vision-cv) Projects | A Step-by-Step Guide
<strong>Watch:</strong> How to Do <ahref="https://www.ultralytics.com/glossary/computer-vision-cv">Computer Vision</a> Projects | A Step-by-Step Guide
</p>
Computer vision techniques like [object detection](../tasks/detect.md), [image classification](../tasks/classify.md), and [instance segmentation](../tasks/segment.md) can be applied across various industries, from [autonomous driving](https://www.ultralytics.com/solutions/ai-in-self-driving) to [medical imaging](https://www.ultralytics.com/solutions/ai-in-healthcare) to gain valuable insights.
<palign="center">
<imgwidth="100%"src="https://media.licdn.com/dms/image/D4D12AQGf61lmNOm3xA/article-cover_image-shrink_720_1280/0/1656513646049?e=1722470400&v=beta&t=23Rqohhxfie38U5syPeL2XepV2QZe6_HSSC-4rAAvt4"alt="Overview of computer vision techniques">
</p>
Working on your own computer vision projects is a great way to understand and learn more about computer vision. However, a computer vision project can consist of many steps, and it might seem confusing at first. By the end of this guide, you'll be familiar with the steps involved in a computer vision project. We'll walk through everything from the beginning to the end of a project, explaining why each part is important. Let's get started and make your computer vision project a success!
Each badge shows the status of the last run of the corresponding CI test on the `main` branch of the respective repository. If a test fails, the badge will display a "failing" status, and if it passes, it will display a "passing" status.
<ahref="https://console.paperspace.com/github/ultralytics/ultralytics"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a>
<ahref="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a>
<ahref="https://www.kaggle.com/ultralytics/yolov8"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
<ahref="https://www.kaggle.com/models/ultralytics/yolo11"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
</div>
Introducing [Ultralytics](https://www.ultralytics.com/) [YOLO11](https://github.com/ultralytics/ultralytics), the latest version of the acclaimed real-time object detection and image segmentation model. YOLO11 is built on cutting-edge advancements in [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) and [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv), offering unparalleled performance in terms of speed and [accuracy](https://www.ultralytics.com/glossary/accuracy). Its streamlined design makes it suitable for various applications and easily adaptable to different hardware platforms, from edge devices to cloud APIs.
@ -20,7 +20,7 @@ With more than [10 million users](https://www.kaggle.com/discussions/general/332
Training YOLO11 models on Kaggle is simple and efficient, thanks to the platform's access to powerful GPUs.
To get started, access the [Kaggle YOLO11 Notebook](https://www.kaggle.com/code/ultralytics/yolov8). Kaggle's environment comes with pre-installed libraries like [TensorFlow](https://www.ultralytics.com/glossary/tensorflow) and [PyTorch](https://www.ultralytics.com/glossary/pytorch), making the setup process hassle-free.
To get started, access the [Kaggle YOLO11 Notebook](https://www.kaggle.com/code/glennjocherultralytics/yolo11). Kaggle's environment comes with pre-installed libraries like [TensorFlow](https://www.ultralytics.com/glossary/tensorflow) and [PyTorch](https://www.ultralytics.com/glossary/pytorch), making the setup process hassle-free.
![What is the kaggle integration with respect to YOLO11?](https://github.com/ultralytics/docs/releases/download/0/kaggle-integration-yolov8.avif)
@ -28,7 +28,7 @@ Once you sign in to your Kaggle account, you can click on the option to copy and
![Using kaggle for machine learning model training with a GPU](https://github.com/ultralytics/docs/releases/download/0/using-kaggle-for-machine-learning-model-training-with-a-gpu.avif)
On the [official YOLO11 Kaggle notebook page](https://www.kaggle.com/code/ultralytics/yolov8), if you click on the three dots in the upper right-hand corner, you'll notice more options will pop up.
On the [official YOLO11 Kaggle notebook page](https://www.kaggle.com/code/glennjocherultralytics/yolo11), if you click on the three dots in the upper right-hand corner, you'll notice more options will pop up.
![Overview of Options From the Official YOLO11 Kaggle Notebook Page](https://github.com/ultralytics/docs/releases/download/0/overview-options-yolov8-kaggle-notebook.avif)
@ -95,7 +95,7 @@ Interested in more YOLO11 integrations? Check out the[ Ultralytics integration g
### How do I train a YOLO11 model on Kaggle?
Training a YOLO11 model on Kaggle is straightforward. First, access the [Kaggle YOLO11 Notebook](https://www.kaggle.com/ultralytics/yolov8). Sign in to your Kaggle account, copy and edit the notebook, and select a GPU under the accelerator settings. Run the notebook cells to start training. For more detailed steps, refer to our [YOLO11 Model Training guide](../modes/train.md).
Training a YOLO11 model on Kaggle is straightforward. First, access the [Kaggle YOLO11 Notebook](https://www.kaggle.com/code/glennjocherultralytics/yolo11). Sign in to your Kaggle account, copy and edit the notebook, and select a GPU under the accelerator settings. Run the notebook cells to start training. For more detailed steps, refer to our [YOLO11 Model Training guide](../modes/train.md).
### What are the benefits of using Kaggle for YOLO11 model training?
| `workspace` | `float` | `4.0` | Sets the maximum workspace size in GiB for TensorRT optimizations, balancing memory usage and performance. |
| `nms` | `bool` | `False` | Adds Non-Maximum Suppression (NMS) to the CoreML export, essential for accurate and efficient detection post-processing. |
| `batch` | `int` | `1` | Specifies export model batch inference size or the max number of images the exported model will process concurrently in `predict` mode. |
| `device` | `str` | `None` | Specifies the device for exporting: GPU (`device=0`), CPU (`device=cpu`), MPS for Apple silicon (`device=mps`) or DLA for NVIDIA Jetson (`device=dla:0` or `device=dla:1`). |
| `classes` | `list[int]` | `None` | Filters predictions to a set of class IDs. Only detections belonging to the specified classes will be returned. Useful for focusing on relevant objects in multi-class detection tasks. |
| `retina_masks` | `bool` | `False` | Uses high-resolution segmentation masks if available in the model. This can enhance mask quality for segmentation tasks, providing finer detail. |
| `embed` | `list[int]` | `None` | Specifies the layers from which to extract feature vectors or [embeddings](https://www.ultralytics.com/glossary/embeddings). Useful for downstream tasks like clustering or similarity search. |
| `project` | `str` | `None` | Name of the project directory where prediction outputs are saved if `save` is enabled. |
| `name` | `str` | `None` | Name of the prediction run. Used for creating a subdirectory within the project folder, where prediction outputs are stored if `save` is enabled. |
| `plots` | `bool` | `False` | When set to `True`, generates and saves plots of predictions versus ground truth for visual evaluation of the model's performance. |
| `rect` | `bool` | `False` | If `True`, uses rectangular inference for batching, reducing padding and potentially increasing speed and efficiency. |
| `split` | `str` | `val` | Determines the dataset split to use for validation (`val`, `test`, or `train`). Allows flexibility in choosing the data segment for performance evaluation. |
| `project` | `str` | `None` | Name of the project directory where validation outputs are saved. |
| `name` | `str` | `None` | Name of the validation run. Used for creating a subdirectory within the project folder, where valdiation logs and outputs are stored. |
Welcome to Ultralytics' model documentation! We offer support for a wide range of models, each tailored to specific tasks like [object detection](../tasks/detect.md), [instance segmentation](../tasks/segment.md), [image classification](../tasks/classify.md), [pose estimation](../tasks/pose.md), and [multi-object tracking](../modes/track.md). If you're interested in contributing your model architecture to Ultralytics, check out our [Contributing Guide](../help/contributing.md).
@ -320,7 +320,7 @@ This approach provides a powerful means of customizing state-of-the-art object d
## Citations and Acknowledgements
We extend our gratitude to the [Tencent AILab Computer Vision Center](https://ai.tencent.com/) for their pioneering work in real-time open-vocabulary object detection with YOLO-World:
We extend our gratitude to the [Tencent AILab Computer Vision Center](https://www.tencent.com/) for their pioneering work in real-time open-vocabulary object detection with YOLO-World:
Ultralytics has not published a formal research paper for YOLO11 due to the rapidly evolving nature of the models. We focus on advancing the technology and making it easier to use, rather than producing static documentation. For the most up-to-date information on YOLO architecture, features, and usage, please refer to our [GitHub repository](https://github.com/ultralytics/ultralytics) and [documentation](https://docs.ultralytics.com).
YOLO11 is the latest iteration in the [Ultralytics](https://www.ultralytics.com/) YOLO series of real-time object detectors, redefining what's possible with cutting-edge [accuracy](https://www.ultralytics.com/glossary/accuracy), speed, and efficiency. Building upon the impressive advancements of previous YOLO versions, YOLO11 introduces significant improvements in architecture and training methods, making it a versatile choice for a wide range of [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) tasks.
Ultralytics has not published a formal research paper for YOLOv5 due to the rapidly evolving nature of the models. We focus on advancing the technology and making it easier to use, rather than producing static documentation. For the most up-to-date information on YOLO architecture, features, and usage, please refer to our [GitHub repository](https://github.com/ultralytics/ultralytics) and [documentation](https://docs.ultralytics.com).
Ultralytics has not published a formal research paper for YOLOv8 due to the rapidly evolving nature of the models. We focus on advancing the technology and making it easier to use, rather than producing static documentation. For the most up-to-date information on YOLO architecture, features, and usage, please refer to our [GitHub repository](https://github.com/ultralytics/ultralytics) and [documentation](https://docs.ultralytics.com).
## Overview
YOLOv8 is the latest iteration in the YOLO series of real-time object detectors, offering cutting-edge performance in terms of accuracy and speed. Building upon the advancements of previous YOLO versions, YOLOv8 introduces new features and optimizations that make it an ideal choice for various [object detection](https://www.ultralytics.com/glossary/object-detection) tasks in a wide range of applications.
@ -8,7 +8,7 @@ keywords: YOLOv5, AWS, Deep Learning, Machine Learning, AWS EC2, YOLOv5 setup, D
Setting up a high-performance deep learning environment can be daunting for newcomers, but fear not! 🛠️ With this guide, we'll walk you through the process of getting YOLOv5 up and running on an AWS Deep Learning instance. By leveraging the power of Amazon Web Services (AWS), even those new to [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) can get started quickly and cost-effectively. The AWS platform's scalability is perfect for both experimentation and production deployment.
Other quickstart options for YOLOv5 include our [Colab Notebook](https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb) <ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>, [GCP Deep Learning VM](./google_cloud_quickstart_tutorial.md), and our Docker image at [Docker Hub](https://hub.docker.com/r/ultralytics/yolov5) <ahref="https://hub.docker.com/r/ultralytics/yolov5"><imgsrc="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker"alt="Docker Pulls"></a>.
Other quickstart options for YOLOv5 include our [Colab Notebook](https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb) <ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/models/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>, [GCP Deep Learning VM](./google_cloud_quickstart_tutorial.md), and our Docker image at [Docker Hub](https://hub.docker.com/r/ultralytics/yolov5) <ahref="https://hub.docker.com/r/ultralytics/yolov5"><imgsrc="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker"alt="Docker Pulls"></a>.
This tutorial will guide you through the process of setting up and running YOLOv5 in a Docker container.
You can also explore other quickstart options for YOLOv5, such as our [Colab Notebook](https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb) <ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>, [GCP Deep Learning VM](./google_cloud_quickstart_tutorial.md), and [Amazon AWS](./aws_quickstart_tutorial.md).
You can also explore other quickstart options for YOLOv5, such as our [Colab Notebook](https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb) <ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/models/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>, [GCP Deep Learning VM](./google_cloud_quickstart_tutorial.md), and [Amazon AWS](./aws_quickstart_tutorial.md).
<ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a>
<ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a>
<ahref="https://www.kaggle.com/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
<ahref="https://www.kaggle.com/models/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
<br>
<br>
Welcome to the Ultralytics' <ahref="https://github.com/ultralytics/yolov5">YOLOv5</a>🚀 Documentation! YOLOv5, the fifth iteration of the revolutionary "You Only Look Once" [object detection](https://www.ultralytics.com/glossary/object-detection) model, is designed to deliver high-speed, high-accuracy results in real-time.
Welcome to the Ultralytics' <ahref="https://github.com/ultralytics/yolov5">YOLOv5</a>🚀 Documentation! YOLOv5, the fifth iteration of the revolutionary "You Only Look Once" <ahref="https://www.ultralytics.com/glossary/object-detection">object detection</a> model, is designed to deliver high-speed, high-accuracy results in real-time.
<br><br>
Built on PyTorch, this powerful [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) framework has garnered immense popularity for its versatility, ease of use, and high performance. Our documentation guides you through the installation process, explains the architectural nuances of the model, showcases various use-cases, and provides a series of detailed tutorials. These resources will help you harness the full potential of YOLOv5 for your [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) projects. Let's get started!
Built on PyTorch, this powerful <ahref="https://www.ultralytics.com/glossary/deep-learning-dl">deep learning</a> framework has garnered immense popularity for its versatility, ease of use, and high performance. Our documentation guides you through the installation process, explains the architectural nuances of the model, showcases various use-cases, and provides a series of detailed tutorials. These resources will help you harness the full potential of YOLOv5 for your <ahref="https://www.ultralytics.com/glossary/computer-vision-cv">computer vision</a> projects. Let's get started!
</div>
@ -54,7 +54,7 @@ Here's a compilation of comprehensive tutorials that will guide you through diff
Ultralytics provides a range of ready-to-use environments, each pre-installed with essential dependencies such as [CUDA](https://developer.nvidia.com/cuda-zone), [CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/), to kickstart your projects.
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/models/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
@ -153,7 +153,7 @@ We recommend a minimum of 300 generations of evolution for best results. Note th
Ultralytics provides a range of ready-to-use environments, each pre-installed with essential dependencies such as [CUDA](https://developer.nvidia.com/cuda-zone), [CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/), to kickstart your projects.
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/models/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
Ultralytics provides a range of ready-to-use environments, each pre-installed with essential dependencies such as [CUDA](https://developer.nvidia.com/cuda-zone), [CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/), to kickstart your projects.
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/models/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
@ -234,7 +234,7 @@ YOLOv5 OpenVINO C++ inference examples:
Ultralytics provides a range of ready-to-use environments, each pre-installed with essential dependencies such as [CUDA](https://developer.nvidia.com/cuda-zone), [CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/), to kickstart your projects.
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/models/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
@ -97,7 +97,7 @@ In the results we can observe that we have achieved a **sparsity of 30%** in our
Ultralytics provides a range of ready-to-use environments, each pre-installed with essential dependencies such as [CUDA](https://developer.nvidia.com/cuda-zone), [CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/), to kickstart your projects.
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/models/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
@ -173,7 +173,7 @@ If you went through all the above, feel free to raise an Issue by giving as much
Ultralytics provides a range of ready-to-use environments, each pre-installed with essential dependencies such as [CUDA](https://developer.nvidia.com/cuda-zone), [CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/), to kickstart your projects.
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/models/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
@ -361,7 +361,7 @@ model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5s_paddle_mode
Ultralytics provides a range of ready-to-use environments, each pre-installed with essential dependencies such as [CUDA](https://developer.nvidia.com/cuda-zone), [CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/), to kickstart your projects.
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/models/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
@ -60,7 +60,7 @@ The real world is messy and your model will invariably encounter situations your
Ultralytics provides a range of ready-to-use environments, each pre-installed with essential dependencies such as [CUDA](https://developer.nvidia.com/cuda-zone), [CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/), to kickstart your projects.
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/models/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
@ -102,4 +102,4 @@ Active learning is a machine learning strategy that iteratively improves a model
### How can I use Ultralytics environments for training YOLOv5 models on different platforms?
Ultralytics provides ready-to-use environments with pre-installed dependencies like CUDA, CUDNN, Python, and [PyTorch](https://www.ultralytics.com/glossary/pytorch), making it easier to kickstart your training projects. These environments are available on various platforms such as Google Cloud, AWS, Azure, and Docker. You can also access free GPU notebooks via [Paperspace](https://bit.ly/yolov5-paperspace-notebook), [Google Colab](https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb), and [Kaggle](https://www.kaggle.com/ultralytics/yolov5). For specific setup instructions, visit the [Supported Environments](#supported-environments) section of the documentation.
Ultralytics provides ready-to-use environments with pre-installed dependencies like CUDA, CUDNN, Python, and [PyTorch](https://www.ultralytics.com/glossary/pytorch), making it easier to kickstart your training projects. These environments are available on various platforms such as Google Cloud, AWS, Azure, and Docker. You can also access free GPU notebooks via [Paperspace](https://bit.ly/yolov5-paperspace-notebook), [Google Colab](https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb), and [Kaggle](https://www.kaggle.com/models/ultralytics/yolov5). For specific setup instructions, visit the [Supported Environments](#supported-environments) section of the documentation.
@ -151,7 +151,7 @@ You can customize the TTA ops applied in the YOLOv5 `forward_augment()` method [
Ultralytics provides a range of ready-to-use environments, each pre-installed with essential dependencies such as [CUDA](https://developer.nvidia.com/cuda-zone), [CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/), to kickstart your projects.
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/models/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
@ -77,7 +77,7 @@ Export in `YOLOv5 Pytorch` format, then copy the snippet into your training scri
### 2.1 Create `dataset.yaml`
[COCO128](https://www.kaggle.com/ultralytics/coco128) is an example small tutorial dataset composed of the first 128 images in [COCO](https://cocodataset.org/) train2017. These same 128 images are used for both training and validation to verify our training pipeline is capable of [overfitting](https://www.ultralytics.com/glossary/overfitting). [data/coco128.yaml](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), shown below, is the dataset config file that defines 1) the dataset root directory `path` and relative paths to `train` / `val` / `test` image directories (or `*.txt` files with image paths) and 2) a class `names` dictionary:
[COCO128](https://www.kaggle.com/datasets/ultralytics/coco128) is an example small tutorial dataset composed of the first 128 images in [COCO](https://cocodataset.org/) train2017. These same 128 images are used for both training and validation to verify our training pipeline is capable of [overfitting](https://www.ultralytics.com/glossary/overfitting). [data/coco128.yaml](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), shown below, is the dataset config file that defines 1) the dataset root directory `path` and relative paths to `train` / `val` / `test` image directories (or `*.txt` files with image paths) and 2) a class `names` dictionary:
```yaml
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
💡 Always train from a local dataset. Mounted or network drives like Google Drive will be very slow.
All training results are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc. For more details see the Training section of our tutorial notebook. <ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
All training results are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc. For more details see the Training section of our tutorial notebook. <ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/models/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
## 5. Visualize
@ -211,7 +211,7 @@ Once your model is trained you can use your best checkpoint `best.pt` to:
Ultralytics provides a range of ready-to-use environments, each pre-installed with essential dependencies such as [CUDA](https://developer.nvidia.com/cuda-zone), [CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/), to kickstart your projects.
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/models/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
@ -141,7 +141,7 @@ Interestingly, the more modules are frozen the less GPU memory is required to tr
Ultralytics provides a range of ready-to-use environments, each pre-installed with essential dependencies such as [CUDA](https://developer.nvidia.com/cuda-zone), [CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/), to kickstart your projects.
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/models/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
"Welcome to the Ultralytics YOLO11 🚀 notebook! <a href=\"https://github.com/ultralytics/ultralytics\">YOLO11</a> is the latest version of the YOLO (You Only Look Once) AI models developed by <a href=\"https://ultralytics.com\">Ultralytics</a>. This notebook serves as the starting point for exploring the various resources available to help you get started with YOLO11 and understand its features and capabilities.\n",
"Welcome to the Ultralytics YOLO11 🚀 notebook! <a href=\"https://github.com/ultralytics/ultralytics\">YOLO11</a> is the latest version of the YOLO (You Only Look Once) AI models developed by <a href=\"https://ultralytics.com\">Ultralytics</a>. This notebook serves as the starting point for exploring the various resources available to help you get started with YOLO11 and understand its features and capabilities.\n",
"Welcome to the Ultralytics YOLO11 🚀 notebook! <a href=\"https://github.com/ultralytics/ultralytics\">YOLO11</a> is the latest version of the YOLO (You Only Look Once) AI models developed by <a href=\"https://ultralytics.com\">Ultralytics</a>. This notebook serves as the starting point for exploring the various resources available to help you get started with YOLO11 and understand its features and capabilities.\n",