Merge `model()` and `model.predict()` (#146)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
pull/144/head^2
Glenn Jocher 2 years ago committed by GitHub
parent 99275814f1
commit 46cb657b64
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 24
      tests/test_python.py
  2. 15
      ultralytics/yolo/engine/model.py

@ -1,19 +1,17 @@
from pathlib import Path from pathlib import Path
import torch
from ultralytics import YOLO from ultralytics import YOLO
from ultralytics.yolo.utils import ROOT, SETTINGS from ultralytics.yolo.utils import ROOT, SETTINGS
MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n.pt'
CFG = 'yolov8n.yaml' CFG = 'yolov8n.yaml'
MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n.pt'
SOURCE = ROOT / 'assets/bus.jpg'
def test_model_forward(): def test_model_forward():
model = YOLO(CFG) model = YOLO(CFG)
img = torch.rand(1, 3, 320, 320) model.predict(SOURCE)
model.forward(img) model(SOURCE)
model(img)
def test_model_info(): def test_model_info():
@ -43,15 +41,13 @@ def test_val():
def test_train_scratch(): def test_train_scratch():
model = YOLO(CFG) model = YOLO(CFG)
model.train(data="coco128.yaml", epochs=1, imgsz=32) model.train(data="coco128.yaml", epochs=1, imgsz=32)
img = torch.rand(1, 3, 320, 320) model(SOURCE)
model(img)
def test_train_pretrained(): def test_train_pretrained():
model = YOLO(MODEL) model = YOLO(MODEL)
model.train(data="coco128.yaml", epochs=1, imgsz=32) model.train(data="coco128.yaml", epochs=1, imgsz=32)
img = torch.rand(1, 3, 320, 320) model(SOURCE)
model(img)
def test_export_torchscript(): def test_export_torchscript():
@ -100,11 +96,3 @@ def test_export_paddle():
def test_all_model_yamls(): def test_all_model_yamls():
for m in list((ROOT / 'yolo/v8/models').rglob('*.yaml')): for m in list((ROOT / 'yolo/v8/models').rglob('*.yaml')):
YOLO(m.name) YOLO(m.name)
# def run_all_tests(): # do not name function test_...
# pass
#
#
# if __name__ == "__main__":
# run_all_tests()

@ -1,12 +1,10 @@
from pathlib import Path from pathlib import Path
import torch
from ultralytics import yolo # noqa from ultralytics import yolo # noqa
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_weights from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_weights
from ultralytics.yolo.configs import get_config from ultralytics.yolo.configs import get_config
from ultralytics.yolo.engine.exporter import Exporter from ultralytics.yolo.engine.exporter import Exporter
from ultralytics.yolo.utils import DEFAULT_CONFIG, HELP_MSG, LOGGER, yaml_load from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, yaml_load
from ultralytics.yolo.utils.checks import check_imgsz, check_yaml from ultralytics.yolo.utils.checks import check_imgsz, check_yaml
from ultralytics.yolo.utils.torch_utils import guess_task_from_head, smart_inference_mode from ultralytics.yolo.utils.torch_utils import guess_task_from_head, smart_inference_mode
@ -55,6 +53,9 @@ class YOLO:
# Load or create new YOLO model # Load or create new YOLO model
{'.pt': self._load, '.yaml': self._new}[Path(model).suffix](model) {'.pt': self._load, '.yaml': self._new}[Path(model).suffix](model)
def __call__(self, source):
return self.predict(source)
def _new(self, cfg: str, verbose=True): def _new(self, cfg: str, verbose=True):
""" """
Initializes a new model and infers the task type from the model definitions. Initializes a new model and infers the task type from the model definitions.
@ -211,14 +212,6 @@ class YOLO:
return model_class, trainer_class, validator_class, predictor_class return model_class, trainer_class, validator_class, predictor_class
@smart_inference_mode()
def __call__(self, imgs):
device = next(self.model.parameters()).device # get model device
return self.model(imgs.to(device))
def forward(self, imgs):
return self.__call__(imgs)
@staticmethod @staticmethod
def _reset_ckpt_args(args): def _reset_ckpt_args(args):
args.pop("device", None) args.pop("device", None)

Loading…
Cancel
Save