diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml
index 3443efd64a..a19c6e093c 100644
--- a/.github/workflows/ci.yaml
+++ b/.github/workflows/ci.yaml
@@ -52,7 +52,7 @@ jobs:
- uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- - uses: astral-sh/setup-uv@v3
+ - uses: astral-sh/setup-uv@v4
- name: Install requirements
shell: bash # for Windows compatibility
run: |
@@ -172,7 +172,7 @@ jobs:
- uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- - uses: astral-sh/setup-uv@v3
+ - uses: astral-sh/setup-uv@v4
- name: Install requirements
shell: bash # for Windows compatibility
run: |
@@ -214,7 +214,7 @@ jobs:
runs-on: gpu-latest
steps:
- uses: actions/checkout@v4
- - uses: astral-sh/setup-uv@v3
+ - uses: astral-sh/setup-uv@v4
- name: Install requirements
run: uv pip install --system . pytest-cov
- name: Check environment
diff --git a/.github/workflows/codeql.yaml b/.github/workflows/codeql.yaml
deleted file mode 100644
index e6e3e85d3c..0000000000
--- a/.github/workflows/codeql.yaml
+++ /dev/null
@@ -1,42 +0,0 @@
-# Ultralytics YOLO 🚀, AGPL-3.0 license
-
-name: "CodeQL"
-
-on:
- schedule:
- - cron: "0 0 1 * *"
- workflow_dispatch:
-
-jobs:
- analyze:
- name: Analyze
- runs-on: ${{ 'ubuntu-latest' }}
- permissions:
- actions: read
- contents: read
- security-events: write
-
- strategy:
- fail-fast: false
- matrix:
- language: ["python"]
- # CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python', 'ruby' ]
-
- steps:
- - name: Checkout repository
- uses: actions/checkout@v4
-
- # Initializes the CodeQL tools for scanning.
- - name: Initialize CodeQL
- uses: github/codeql-action/init@v3
- with:
- languages: ${{ matrix.language }}
- # If you wish to specify custom queries, you can do so here or in a config file.
- # By default, queries listed here will override any specified in a config file.
- # Prefix the list here with "+" to use these queries and those in the config file.
- # queries: security-extended,security-and-quality
-
- - name: Perform CodeQL Analysis
- uses: github/codeql-action/analyze@v3
- with:
- category: "/language:${{matrix.language}}"
diff --git a/.github/workflows/docs.yml b/.github/workflows/docs.yml
index f2d440c6d3..5b0c7a96d3 100644
--- a/.github/workflows/docs.yml
+++ b/.github/workflows/docs.yml
@@ -46,7 +46,7 @@ jobs:
uses: actions/setup-python@v5
with:
python-version: "3.x"
- - uses: astral-sh/setup-uv@v3
+ - uses: astral-sh/setup-uv@v4
- name: Install Dependencies
run: uv pip install --system ruff black tqdm mkdocs-material "mkdocstrings[python]" mkdocs-jupyter mkdocs-redirects mkdocs-ultralytics-plugin mkdocs-macros-plugin
- name: Ruff fixes
diff --git a/docs/en/guides/heatmaps.md b/docs/en/guides/heatmaps.md
index 038929ccfd..8bc86b69eb 100644
--- a/docs/en/guides/heatmaps.md
+++ b/docs/en/guides/heatmaps.md
@@ -49,7 +49,7 @@ A heatmap generated with [Ultralytics YOLO11](https://github.com/ultralytics/ult
yolo solutions heatmap colormap=cv2.COLORMAP_INFERNO
# Heatmaps + object counting
- yolo solutions heatmap region=[(20, 400), (1080, 404), (1080, 360), (20, 360)]
+ yolo solutions heatmap region=[(20, 400), (1080, 400), (1080, 360), (20, 360)]
```
=== "Python"
@@ -67,9 +67,9 @@ A heatmap generated with [Ultralytics YOLO11](https://github.com/ultralytics/ult
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# In case you want to apply object counting + heatmaps, you can pass region points.
- # region_points = [(20, 400), (1080, 404)] # Define line points
- # region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)] # Define region points
- # region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)] # Define polygon points
+ # region_points = [(20, 400), (1080, 400)] # Define line points
+ # region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360)] # Define region points
+ # region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360), (20, 400)] # Define polygon points
# Init heatmap
heatmap = solutions.Heatmap(
diff --git a/docs/en/guides/object-counting.md b/docs/en/guides/object-counting.md
index ba21ffac2b..a6ea9d923d 100644
--- a/docs/en/guides/object-counting.md
+++ b/docs/en/guides/object-counting.md
@@ -58,7 +58,7 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
yolo solutions count source="path/to/video/file.mp4"
# Pass region coordinates
- yolo solutions count region=[(20, 400), (1080, 404), (1080, 360), (20, 360)]
+ yolo solutions count region=[(20, 400), (1080, 400), (1080, 360), (20, 360)]
```
=== "Python"
@@ -74,8 +74,8 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
# Define region points
# region_points = [(20, 400), (1080, 400)] # For line counting
- region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)] # For rectangle region counting
- # region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)] # For polygon region counting
+ region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360)] # For rectangle region counting
+ # region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360), (20, 400)] # For polygon region counting
# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
@@ -148,7 +148,7 @@ def count_objects_in_region(video_path, output_video_path, model_path):
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
- region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
+ region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360)]
counter = solutions.ObjectCounter(show=True, region=region_points, model=model_path)
while cap.isOpened():
diff --git a/docs/en/guides/queue-management.md b/docs/en/guides/queue-management.md
index 9ce6d874ae..1901916344 100644
--- a/docs/en/guides/queue-management.md
+++ b/docs/en/guides/queue-management.md
@@ -45,7 +45,7 @@ Queue management using [Ultralytics YOLO11](https://github.com/ultralytics/ultra
yolo solutions queue source="path/to/video/file.mp4"
# Pass queue coordinates
- yolo solutions queue region=[(20, 400), (1080, 404), (1080, 360), (20, 360)]
+ yolo solutions queue region=[(20, 400), (1080, 400), (1080, 360), (20, 360)]
```
=== "Python"
@@ -64,8 +64,8 @@ Queue management using [Ultralytics YOLO11](https://github.com/ultralytics/ultra
video_writer = cv2.VideoWriter("queue_management.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Define queue region points
- queue_region = [(20, 400), (1080, 404), (1080, 360), (20, 360)] # Define queue region points
- # queue_region = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)] # Define queue polygon points
+ queue_region = [(20, 400), (1080, 400), (1080, 360), (20, 360)] # Define queue region points
+ # queue_region = [(20, 400), (1080, 400), (1080, 360), (20, 360), (20, 400)] # Define queue polygon points
# Init Queue Manager
queue = solutions.QueueManager(
@@ -126,7 +126,7 @@ import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("path/to/video.mp4")
-queue_region = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
+queue_region = [(20, 400), (1080, 400), (1080, 360), (20, 360)]
queue = solutions.QueueManager(
model="yolo11n.pt",
diff --git a/docs/en/guides/region-counting.md b/docs/en/guides/region-counting.md
index c8363d68d3..94120bcab6 100644
--- a/docs/en/guides/region-counting.md
+++ b/docs/en/guides/region-counting.md
@@ -47,7 +47,7 @@ keywords: object counting, regions, YOLOv8, computer vision, Ultralytics, effici
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Define region points
- # region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)] # Pass region as list
+ # region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360)] # Pass region as list
# pass region as dictionary
region_points = {
diff --git a/docs/en/guides/speed-estimation.md b/docs/en/guides/speed-estimation.md
index 722e11b178..a885bcaa2b 100644
--- a/docs/en/guides/speed-estimation.md
+++ b/docs/en/guides/speed-estimation.md
@@ -50,7 +50,7 @@ keywords: Ultralytics YOLO11, speed estimation, object tracking, computer vision
yolo solutions speed source="path/to/video/file.mp4"
# Pass region coordinates
- yolo solutions speed region=[(20, 400), (1080, 404), (1080, 360), (20, 360)]
+ yolo solutions speed region=[(20, 400), (1080, 400), (1080, 360), (20, 360)]
```
=== "Python"
@@ -68,7 +68,7 @@ keywords: Ultralytics YOLO11, speed estimation, object tracking, computer vision
video_writer = cv2.VideoWriter("speed_management.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Define speed region points
- speed_region = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
+ speed_region = [(20, 400), (1080, 400), (1080, 360), (20, 360)]
speed = solutions.SpeedEstimator(
show=True, # Display the output
diff --git a/docs/en/help/CI.md b/docs/en/help/CI.md
index 0f6b4c3a40..4879545167 100644
--- a/docs/en/help/CI.md
+++ b/docs/en/help/CI.md
@@ -22,18 +22,18 @@ Here's a brief description of our CI actions:
Below is the table showing the status of these CI tests for our main repositories:
-| Repository | CI | Docker Deployment | Broken Links | CodeQL | PyPI and Docs Publishing |
-| --------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| [yolov3](https://github.com/ultralytics/yolov3) | [](https://github.com/ultralytics/yolov3/actions/workflows/ci-testing.yml) | [](https://github.com/ultralytics/yolov3/actions/workflows/docker.yml) | [](https://github.com/ultralytics/yolov3/actions/workflows/links.yml) | [](https://github.com/ultralytics/yolov3/actions/workflows/codeql-analysis.yml) | |
-| [yolov5](https://github.com/ultralytics/yolov5) | [](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml) | [](https://github.com/ultralytics/yolov5/actions/workflows/docker.yml) | [](https://github.com/ultralytics/yolov5/actions/workflows/links.yml) | [](https://github.com/ultralytics/yolov5/actions/workflows/codeql-analysis.yml) | |
-| [ultralytics](https://github.com/ultralytics/ultralytics) | [](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml) | [](https://github.com/ultralytics/ultralytics/actions/workflows/docker.yaml) | [](https://github.com/ultralytics/ultralytics/actions/workflows/links.yml) | [](https://github.com/ultralytics/ultralytics/actions/workflows/codeql.yaml) | [](https://github.com/ultralytics/ultralytics/actions/workflows/publish.yml) |
-| [hub-sdk](https://github.com/ultralytics/hub-sdk) | [](https://github.com/ultralytics/hub-sdk/actions/workflows/ci.yml) | | [](https://github.com/ultralytics/hub-sdk/actions/workflows/links.yml) | [](https://github.com/ultralytics/hub-sdk/actions/workflows/codeql.yaml) | [](https://github.com/ultralytics/hub-sdk/actions/workflows/publish.yml) |
-| [hub](https://github.com/ultralytics/hub) | [](https://github.com/ultralytics/hub/actions/workflows/ci.yaml) | | [](https://github.com/ultralytics/hub/actions/workflows/links.yml) | | |
-| [mkdocs](https://github.com/ultralytics/mkdocs) | [](https://github.com/ultralytics/mkdocs/actions/workflows/format.yml) | | | [](https://github.com/ultralytics/mkdocs/actions/workflows/github-code-scanning/codeql) | [](https://github.com/ultralytics/mkdocs/actions/workflows/publish.yml) |
-| [thop](https://github.com/ultralytics/thop) | [](https://github.com/ultralytics/thop/actions/workflows/format.yml) | | | [](https://github.com/ultralytics/thop/actions/workflows/github-code-scanning/codeql) | [](https://github.com/ultralytics/mkdocs/actions/workflows/publish.yml) |
-| [actions](https://github.com/ultralytics/mkdocs) | [](https://github.com/ultralytics/actions/actions/workflows/format.yml) | | | [](https://github.com/ultralytics/actions/actions/workflows/github-code-scanning/codeql) | [](https://github.com/ultralytics/actions/actions/workflows/publish.yml) |
-| [docs](https://github.com/ultralytics/docs) | [](https://github.com/ultralytics/docs/actions/workflows/format.yml) | | [](https://github.com/ultralytics/docs/actions/workflows/links.yml)[](https://github.com/ultralytics/docs/actions/workflows/check_domains.yml) | | [](https://github.com/ultralytics/docs/actions/workflows/pages/pages-build-deployment) |
-| [handbook](https://github.com/ultralytics/handbook) | [](https://github.com/ultralytics/handbook/actions/workflows/format.yml) | | [](https://github.com/ultralytics/handbook/actions/workflows/links.yml) | | [](https://github.com/ultralytics/handbook/actions/workflows/pages/pages-build-deployment) |
+| Repository | CI | Docker Deployment | Broken Links | CodeQL | PyPI and Docs Publishing |
+| --------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| [yolov3](https://github.com/ultralytics/yolov3) | [](https://github.com/ultralytics/yolov3/actions/workflows/ci-testing.yml) | [](https://github.com/ultralytics/yolov3/actions/workflows/docker.yml) | [](https://github.com/ultralytics/yolov3/actions/workflows/links.yml) | [](https://github.com/ultralytics/yolov3/actions/workflows/github-code-scanning/codeql) | |
+| [yolov5](https://github.com/ultralytics/yolov5) | [](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml) | [](https://github.com/ultralytics/yolov5/actions/workflows/docker.yml) | [](https://github.com/ultralytics/yolov5/actions/workflows/links.yml) | [](https://github.com/ultralytics/yolov5/actions/workflows/github-code-scanning/codeql) | |
+| [ultralytics](https://github.com/ultralytics/ultralytics) | [](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml) | [](https://github.com/ultralytics/ultralytics/actions/workflows/docker.yaml) | [](https://github.com/ultralytics/ultralytics/actions/workflows/links.yml) | [](https://github.com/ultralytics/ultralytics/actions/workflows/github-code-scanning/codeql) | [](https://github.com/ultralytics/ultralytics/actions/workflows/publish.yml) |
+| [hub-sdk](https://github.com/ultralytics/hub-sdk) | [](https://github.com/ultralytics/hub-sdk/actions/workflows/ci.yml) | | [](https://github.com/ultralytics/hub-sdk/actions/workflows/links.yml) | [](https://github.com/ultralytics/hub-sdk/actions/workflows/github-code-scanning/codeql) | [](https://github.com/ultralytics/hub-sdk/actions/workflows/publish.yml) |
+| [hub](https://github.com/ultralytics/hub) | [](https://github.com/ultralytics/hub/actions/workflows/ci.yaml) | | [](https://github.com/ultralytics/hub/actions/workflows/links.yml) | | |
+| [mkdocs](https://github.com/ultralytics/mkdocs) | [](https://github.com/ultralytics/mkdocs/actions/workflows/format.yml) | | | [](https://github.com/ultralytics/mkdocs/actions/workflows/github-code-scanning/codeql) | [](https://github.com/ultralytics/mkdocs/actions/workflows/publish.yml) |
+| [thop](https://github.com/ultralytics/thop) | [](https://github.com/ultralytics/thop/actions/workflows/format.yml) | | | [](https://github.com/ultralytics/thop/actions/workflows/github-code-scanning/codeql) | [](https://github.com/ultralytics/mkdocs/actions/workflows/publish.yml) |
+| [actions](https://github.com/ultralytics/mkdocs) | [](https://github.com/ultralytics/actions/actions/workflows/format.yml) | | | [](https://github.com/ultralytics/actions/actions/workflows/github-code-scanning/codeql) | [](https://github.com/ultralytics/actions/actions/workflows/publish.yml) |
+| [docs](https://github.com/ultralytics/docs) | [](https://github.com/ultralytics/docs/actions/workflows/format.yml) | | [](https://github.com/ultralytics/docs/actions/workflows/links.yml)[](https://github.com/ultralytics/docs/actions/workflows/check_domains.yml) | | [](https://github.com/ultralytics/docs/actions/workflows/pages/pages-build-deployment) |
+| [handbook](https://github.com/ultralytics/handbook) | [](https://github.com/ultralytics/handbook/actions/workflows/format.yml) | | [](https://github.com/ultralytics/handbook/actions/workflows/links.yml) | | [](https://github.com/ultralytics/handbook/actions/workflows/pages/pages-build-deployment) |
Each badge shows the status of the last run of the corresponding CI test on the `main` branch of the respective repository. If a test fails, the badge will display a "failing" status, and if it passes, it will display a "passing" status.
diff --git a/docs/en/help/privacy.md b/docs/en/help/privacy.md
index 567a72aea5..fc669286d9 100644
--- a/docs/en/help/privacy.md
+++ b/docs/en/help/privacy.md
@@ -153,7 +153,8 @@ Ultralytics collects three primary types of data using Google Analytics:
- **Usage Metrics**: These include how often and in what ways the YOLO Python package is used, preferred features, and typical command-line arguments.
- **System Information**: General non-identifiable information about the computing environments where the package is run.
- **Performance Data**: Metrics related to the performance of models during training, validation, and inference.
- This data helps us enhance user experience and optimize software performance. Learn more in the [Anonymized Google Analytics](#anonymized-google-analytics) section.
+
+This data helps us enhance user experience and optimize software performance. Learn more in the [Anonymized Google Analytics](#anonymized-google-analytics) section.
### How can I disable data collection in the Ultralytics YOLO package?
diff --git a/docs/en/help/security.md b/docs/en/help/security.md
index 39fe3829ff..73d5e99c4d 100644
--- a/docs/en/help/security.md
+++ b/docs/en/help/security.md
@@ -17,7 +17,7 @@ We utilize [Snyk](https://snyk.io/advisor/python/ultralytics) to conduct compreh
Our security strategy includes GitHub's [CodeQL](https://docs.github.com/en/code-security/code-scanning/introduction-to-code-scanning/about-code-scanning-with-codeql) scanning. CodeQL delves deep into our codebase, identifying complex vulnerabilities like SQL injection and XSS by analyzing the code's semantic structure. This advanced level of analysis ensures early detection and resolution of potential security risks.
-[](https://github.com/ultralytics/ultralytics/actions/workflows/codeql.yaml)
+[](https://github.com/ultralytics/ultralytics/actions/workflows/github-code-scanning/codeql)
## GitHub Dependabot Alerts
diff --git a/docs/en/integrations/kaggle.md b/docs/en/integrations/kaggle.md
index 920c5dbc84..cee6b847c9 100644
--- a/docs/en/integrations/kaggle.md
+++ b/docs/en/integrations/kaggle.md
@@ -127,7 +127,8 @@ Kaggle offers unique features that make it an excellent choice:
- **Free Access to TPUs**: Speed up training with powerful TPUs without extra costs.
- **Comprehensive History**: Track changes over time with a detailed history of notebook commits.
- **Resource Availability**: Significant resources are provided for each notebook session, including 12 hours of execution time for CPU and GPU sessions.
- For a comparison with Google Colab, refer to our [Google Colab guide](./google-colab.md).
+
+For a comparison with Google Colab, refer to our [Google Colab guide](./google-colab.md).
### How can I revert to a previous version of my Kaggle notebook?
diff --git a/docs/en/integrations/tensorrt.md b/docs/en/integrations/tensorrt.md
index 1a8e5a9161..ec1cfc3c99 100644
--- a/docs/en/integrations/tensorrt.md
+++ b/docs/en/integrations/tensorrt.md
@@ -127,11 +127,11 @@ The arguments provided when using [export](../modes/export.md) for an Ultralytic
- Adjust the `workspace` value according to your calibration needs and resource availability. While a larger `workspace` may increase calibration time, it allows TensorRT to explore a wider range of optimization tactics, potentially enhancing model performance and [accuracy](https://www.ultralytics.com/glossary/accuracy). Conversely, a smaller `workspace` can reduce calibration time but may limit the optimization strategies, affecting the quality of the quantized model.
- - Default is `workspace=4` (GiB), this value may need to be increased if calibration crashes (exits without warning).
+ - Default is `workspace=None`, which will allow for TensorRT to automatically allocate memory, when configuring manually, this value may need to be increased if calibration crashes (exits without warning).
- - TensorRT will report `UNSUPPORTED_STATE` during export if the value for `workspace` is larger than the memory available to the device, which means the value for `workspace` should be lowered.
+ - TensorRT will report `UNSUPPORTED_STATE` during export if the value for `workspace` is larger than the memory available to the device, which means the value for `workspace` should be lowered or set to `None`.
- - If `workspace` is set to max value and calibration fails/crashes, consider reducing the values for `imgsz` and `batch` to reduce memory requirements.
+ - If `workspace` is set to max value and calibration fails/crashes, consider using `None` for auto-allocation or by reducing the values for `imgsz` and `batch` to reduce memory requirements.
- Remember calibration for INT8 is specific to each device, borrowing a "high-end" GPU for calibration, might result in poor performance when inference is run on another device.
diff --git a/docs/en/macros/export-args.md b/docs/en/macros/export-args.md
index 242090d7c6..803ce14902 100644
--- a/docs/en/macros/export-args.md
+++ b/docs/en/macros/export-args.md
@@ -1,15 +1,15 @@
-| Argument | Type | Default | Description |
-| ----------- | ---------------- | --------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| `format` | `str` | `'torchscript'` | Target format for the exported model, such as `'onnx'`, `'torchscript'`, `'tensorflow'`, or others, defining compatibility with various deployment environments. |
-| `imgsz` | `int` or `tuple` | `640` | Desired image size for the model input. Can be an integer for square images or a tuple `(height, width)` for specific dimensions. |
-| `keras` | `bool` | `False` | Enables export to Keras format for [TensorFlow](https://www.ultralytics.com/glossary/tensorflow) SavedModel, providing compatibility with TensorFlow serving and APIs. |
-| `optimize` | `bool` | `False` | Applies optimization for mobile devices when exporting to TorchScript, potentially reducing model size and improving performance. |
-| `half` | `bool` | `False` | Enables FP16 (half-precision) quantization, reducing model size and potentially speeding up inference on supported hardware. |
-| `int8` | `bool` | `False` | Activates INT8 quantization, further compressing the model and speeding up inference with minimal [accuracy](https://www.ultralytics.com/glossary/accuracy) loss, primarily for edge devices. |
-| `dynamic` | `bool` | `False` | Allows dynamic input sizes for ONNX, TensorRT and OpenVINO exports, enhancing flexibility in handling varying image dimensions. |
-| `simplify` | `bool` | `True` | Simplifies the model graph for ONNX exports with `onnxslim`, potentially improving performance and compatibility. |
-| `opset` | `int` | `None` | Specifies the ONNX opset version for compatibility with different ONNX parsers and runtimes. If not set, uses the latest supported version. |
-| `workspace` | `float` | `4.0` | Sets the maximum workspace size in GiB for TensorRT optimizations, balancing memory usage and performance. |
-| `nms` | `bool` | `False` | Adds Non-Maximum Suppression (NMS) to the CoreML export, essential for accurate and efficient detection post-processing. |
-| `batch` | `int` | `1` | Specifies export model batch inference size or the max number of images the exported model will process concurrently in `predict` mode. |
-| `device` | `str` | `None` | Specifies the device for exporting: GPU (`device=0`), CPU (`device=cpu`), MPS for Apple silicon (`device=mps`) or DLA for NVIDIA Jetson (`device=dla:0` or `device=dla:1`). |
+| Argument | Type | Default | Description |
+| ----------- | ----------------- | --------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| `format` | `str` | `'torchscript'` | Target format for the exported model, such as `'onnx'`, `'torchscript'`, `'tensorflow'`, or others, defining compatibility with various deployment environments. |
+| `imgsz` | `int` or `tuple` | `640` | Desired image size for the model input. Can be an integer for square images or a tuple `(height, width)` for specific dimensions. |
+| `keras` | `bool` | `False` | Enables export to Keras format for [TensorFlow](https://www.ultralytics.com/glossary/tensorflow) SavedModel, providing compatibility with TensorFlow serving and APIs. |
+| `optimize` | `bool` | `False` | Applies optimization for mobile devices when exporting to TorchScript, potentially reducing model size and improving performance. |
+| `half` | `bool` | `False` | Enables FP16 (half-precision) quantization, reducing model size and potentially speeding up inference on supported hardware. |
+| `int8` | `bool` | `False` | Activates INT8 quantization, further compressing the model and speeding up inference with minimal [accuracy](https://www.ultralytics.com/glossary/accuracy) loss, primarily for edge devices. |
+| `dynamic` | `bool` | `False` | Allows dynamic input sizes for ONNX, TensorRT and OpenVINO exports, enhancing flexibility in handling varying image dimensions. |
+| `simplify` | `bool` | `True` | Simplifies the model graph for ONNX exports with `onnxslim`, potentially improving performance and compatibility. |
+| `opset` | `int` | `None` | Specifies the ONNX opset version for compatibility with different ONNX parsers and runtimes. If not set, uses the latest supported version. |
+| `workspace` | `float` or `None` | `None` | Sets the maximum workspace size in GiB for TensorRT optimizations, balancing memory usage and performance; use `None` for auto-allocation by TensorRT up to device maximum. |
+| `nms` | `bool` | `False` | Adds Non-Maximum Suppression (NMS) to the CoreML export, essential for accurate and efficient detection post-processing. |
+| `batch` | `int` | `1` | Specifies export model batch inference size or the max number of images the exported model will process concurrently in `predict` mode. |
+| `device` | `str` | `None` | Specifies the device for exporting: GPU (`device=0`), CPU (`device=cpu`), MPS for Apple silicon (`device=mps`) or DLA for NVIDIA Jetson (`device=dla:0` or `device=dla:1`). |
diff --git a/docs/en/macros/train-args.md b/docs/en/macros/train-args.md
index 0bc48f8117..924bd31345 100644
--- a/docs/en/macros/train-args.md
+++ b/docs/en/macros/train-args.md
@@ -40,7 +40,6 @@
| `dfl` | `1.5` | Weight of the distribution focal loss, used in certain YOLO versions for fine-grained classification. |
| `pose` | `12.0` | Weight of the pose loss in models trained for pose estimation, influencing the emphasis on accurately predicting pose keypoints. |
| `kobj` | `2.0` | Weight of the keypoint objectness loss in pose estimation models, balancing detection confidence with pose accuracy. |
-| `label_smoothing` | `0.0` | Applies label smoothing, softening hard labels to a mix of the target label and a uniform distribution over labels, can improve generalization. |
| `nbs` | `64` | Nominal batch size for normalization of loss. |
| `overlap_mask` | `True` | Determines whether object masks should be merged into a single mask for training, or kept separate for each object. In case of overlap, the smaller mask is overlayed on top of the larger mask during merge. |
| `mask_ratio` | `4` | Downsample ratio for segmentation masks, affecting the resolution of masks used during training. |
diff --git a/docs/en/models/sam-2.md b/docs/en/models/sam-2.md
index 86059422da..983d8cdcd9 100644
--- a/docs/en/models/sam-2.md
+++ b/docs/en/models/sam-2.md
@@ -194,6 +194,34 @@ SAM 2 can be utilized across a broad spectrum of tasks, including real-time vide
yolo predict model=sam2.1_b.pt source=path/to/video.mp4
```
+#### Segment Video and Track objects
+
+!!! example "Segment Video"
+
+ Segment the entire video content with specific prompts and track objects.
+
+ === "Python"
+
+ ```python
+ from ultralytics.models.sam import SAM2VideoPredictor
+
+ # Create SAM2VideoPredictor
+ overrides = dict(conf=0.25, task="segment", mode="predict", imgsz=1024, model="sam2_b.pt")
+ predictor = SAM2VideoPredictor(overrides=overrides)
+
+ # Run inference with single point
+ results = predictor(source="test.mp4", points=[920, 470], labels=1)
+
+ # Run inference with multiple points
+ results = predictor(source="test.mp4", points=[[920, 470], [909, 138]], labels=[1, 1])
+
+ # Run inference with multiple points prompt per object
+ results = predictor(source="test.mp4", points=[[[920, 470], [909, 138]]], labels=[[1, 1]])
+
+ # Run inference with negative points prompt
+ results = predictor(source="test.mp4", points=[[[920, 470], [909, 138]]], labels=[[1, 0]])
+ ```
+
- This example demonstrates how SAM 2 can be used to segment the entire content of an image or video if no prompts (bboxes/points/masks) are provided.
## SAM 2 comparison vs YOLOv8
diff --git a/docs/en/models/yolo-nas.md b/docs/en/models/yolo-nas.md
index 5523cb1b32..394bc83197 100644
--- a/docs/en/models/yolo-nas.md
+++ b/docs/en/models/yolo-nas.md
@@ -149,7 +149,8 @@ YOLO-NAS introduces several key features that make it a superior choice for obje
- **Quantization-Friendly Basic Block:** Enhanced architecture that improves model performance with minimal [precision](https://www.ultralytics.com/glossary/precision) drop post quantization.
- **Sophisticated Training and Quantization:** Employs advanced training schemes and post-training quantization techniques.
- **AutoNAC Optimization and Pre-training:** Utilizes AutoNAC optimization and is pre-trained on prominent datasets like COCO, Objects365, and Roboflow 100.
- These features contribute to its high accuracy, efficient performance, and suitability for deployment in production environments. Learn more in the [Key Features](#key-features) section.
+
+These features contribute to its high accuracy, efficient performance, and suitability for deployment in production environments. Learn more in the [Key Features](#key-features) section.
### Which tasks and modes are supported by YOLO-NAS models?
diff --git a/docs/en/models/yolov7.md b/docs/en/models/yolov7.md
index 1ba9dc271b..78fbbfa10c 100644
--- a/docs/en/models/yolov7.md
+++ b/docs/en/models/yolov7.md
@@ -151,4 +151,5 @@ YOLOv7 offers several key features that revolutionize real-time object detection
- **Dynamic Label Assignment**: Uses a coarse-to-fine lead guided method to assign dynamic targets for outputs across different branches, improving accuracy.
- **Extended and Compound Scaling**: Efficiently utilizes parameters and computation to scale the model for various real-time applications.
- **Efficiency**: Reduces parameter count by 40% and computation by 50% compared to other state-of-the-art models while achieving faster inference speeds.
- For further details on these features, see the [YOLOv7 Overview](#overview) section.
+
+For further details on these features, see the [YOLOv7 Overview](#overview) section.
diff --git a/docs/en/modes/benchmark.md b/docs/en/modes/benchmark.md
index 6680b8ce77..587462dfee 100644
--- a/docs/en/modes/benchmark.md
+++ b/docs/en/modes/benchmark.md
@@ -156,7 +156,8 @@ Exporting YOLO11 models to different formats such as ONNX, TensorRT, and OpenVIN
- **ONNX:** Provides up to 3x CPU speedup.
- **TensorRT:** Offers up to 5x GPU speedup.
- **OpenVINO:** Specifically optimized for Intel hardware.
- These formats enhance both the speed and accuracy of your models, making them more efficient for various real-world applications. Visit the [Export](../modes/export.md) page for complete details.
+
+These formats enhance both the speed and accuracy of your models, making them more efficient for various real-world applications. Visit the [Export](../modes/export.md) page for complete details.
### Why is benchmarking crucial in evaluating YOLO11 models?
@@ -166,7 +167,8 @@ Benchmarking your YOLO11 models is essential for several reasons:
- **Resource Allocation:** Gauge the performance across different hardware options.
- **Optimization:** Determine which export format offers the best performance for specific use cases.
- **Cost Efficiency:** Optimize hardware usage based on benchmark results.
- Key metrics such as mAP50-95, Top-5 accuracy, and inference time help in making these evaluations. Refer to the [Key Metrics](#key-metrics-in-benchmark-mode) section for more information.
+
+Key metrics such as mAP50-95, Top-5 accuracy, and inference time help in making these evaluations. Refer to the [Key Metrics](#key-metrics-in-benchmark-mode) section for more information.
### Which export formats are supported by YOLO11, and what are their advantages?
@@ -176,7 +178,8 @@ YOLO11 supports a variety of export formats, each tailored for specific hardware
- **TensorRT:** Ideal for GPU efficiency.
- **OpenVINO:** Optimized for Intel hardware.
- **CoreML & [TensorFlow](https://www.ultralytics.com/glossary/tensorflow):** Useful for iOS and general ML applications.
- For a complete list of supported formats and their respective advantages, check out the [Supported Export Formats](#supported-export-formats) section.
+
+For a complete list of supported formats and their respective advantages, check out the [Supported Export Formats](#supported-export-formats) section.
### What arguments can I use to fine-tune my YOLO11 benchmarks?
@@ -189,4 +192,5 @@ When running benchmarks, several arguments can be customized to suit specific ne
- **int8:** Activate INT8 quantization for edge devices.
- **device:** Specify the computation device (e.g., "cpu", "cuda:0").
- **verbose:** Control the level of logging detail.
- For a full list of arguments, refer to the [Arguments](#arguments) section.
+
+For a full list of arguments, refer to the [Arguments](#arguments) section.
diff --git a/docs/en/reference/models/sam/predict.md b/docs/en/reference/models/sam/predict.md
index e715225c64..17f8b472c4 100644
--- a/docs/en/reference/models/sam/predict.md
+++ b/docs/en/reference/models/sam/predict.md
@@ -17,4 +17,8 @@ keywords: Ultralytics, SAM, Segment Anything Model, SAM 2, Segment Anything Mode
## ::: ultralytics.models.sam.predict.SAM2Predictor
+