Merge branch 'main' into cli-info

cli-info
Burhan 2 months ago committed by GitHub
commit 3b0926422d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 2
      docs/en/datasets/index.md
  2. 4
      docs/en/index.md
  3. 2
      docs/en/integrations/vscode.md
  4. 34
      docs/en/macros/predict-args.md
  5. 2
      docs/en/models/index.md
  6. 4
      docs/en/models/yolo11.md
  7. 5
      docs/overrides/javascript/extra.js
  8. 8
      mkdocs.yml

@ -19,7 +19,7 @@ Ultralytics provides support for various datasets to facilitate computer vision
<strong>Watch:</strong> Ultralytics Datasets Overview <strong>Watch:</strong> Ultralytics Datasets Overview
</p> </p>
## NEW 🚀 Ultralytics Explorer ## Ultralytics Explorer 🚀 NEW
Create [embeddings](https://www.ultralytics.com/glossary/embeddings) for your dataset, search for similar images, run SQL queries, perform semantic search and even search using natural language! You can get started with our GUI app or build your own using the API. Learn more [here](explorer/index.md). Create [embeddings](https://www.ultralytics.com/glossary/embeddings) for your dataset, search for similar images, run SQL queries, perform semantic search and even search using natural language! You can get started with our GUI app or build your own using the API. Learn more [here](explorer/index.md).

@ -58,7 +58,7 @@ Explore the Ultralytics Docs, a comprehensive resource designed to help you unde
- **Predict** new images and videos with YOLO &nbsp; [:octicons-image-16: Predict on Images](modes/predict.md){ .md-button } - **Predict** new images and videos with YOLO &nbsp; [:octicons-image-16: Predict on Images](modes/predict.md){ .md-button }
- **Train** a new YOLO model on your own custom dataset &nbsp; [:fontawesome-solid-brain: Train a Model](modes/train.md){ .md-button } - **Train** a new YOLO model on your own custom dataset &nbsp; [:fontawesome-solid-brain: Train a Model](modes/train.md){ .md-button }
- **Tasks** YOLO tasks like segment, classify, pose and track &nbsp; [:material-magnify-expand: Explore Tasks](tasks/index.md){ .md-button } - **Tasks** YOLO tasks like segment, classify, pose and track &nbsp; [:material-magnify-expand: Explore Tasks](tasks/index.md){ .md-button }
- **[YOLO11](models/yolo11.md) NEW 🚀**: Ultralytics' latest SOTA models &nbsp; [:material-magnify-expand: Explore new YOLO11 models](models/yolo11.md){ .md-button } - **[YOLO11](models/yolo11.md) 🚀 NEW**: Ultralytics' latest SOTA models &nbsp; [:material-magnify-expand: Explore new YOLO11 models](models/yolo11.md){ .md-button }
<p align="center"> <p align="center">
<br> <br>
@ -84,7 +84,7 @@ Explore the Ultralytics Docs, a comprehensive resource designed to help you unde
- [YOLOv8](https://github.com/ultralytics/ultralytics) released in 2023 by Ultralytics. YOLOv8 introduced new features and improvements for enhanced performance, flexibility, and efficiency, supporting a full range of vision AI tasks, - [YOLOv8](https://github.com/ultralytics/ultralytics) released in 2023 by Ultralytics. YOLOv8 introduced new features and improvements for enhanced performance, flexibility, and efficiency, supporting a full range of vision AI tasks,
- [YOLOv9](models/yolov9.md) introduces innovative methods like Programmable Gradient Information (PGI) and the Generalized Efficient Layer Aggregation Network (GELAN). - [YOLOv9](models/yolov9.md) introduces innovative methods like Programmable Gradient Information (PGI) and the Generalized Efficient Layer Aggregation Network (GELAN).
- [YOLOv10](models/yolov10.md) is created by researchers from [Tsinghua University](https://www.tsinghua.edu.cn/en/) using the [Ultralytics](https://www.ultralytics.com/) [Python package](https://pypi.org/project/ultralytics/). This version provides real-time [object detection](tasks/detect.md) advancements by introducing an End-to-End head that eliminates Non-Maximum Suppression (NMS) requirements. - [YOLOv10](models/yolov10.md) is created by researchers from [Tsinghua University](https://www.tsinghua.edu.cn/en/) using the [Ultralytics](https://www.ultralytics.com/) [Python package](https://pypi.org/project/ultralytics/). This version provides real-time [object detection](tasks/detect.md) advancements by introducing an End-to-End head that eliminates Non-Maximum Suppression (NMS) requirements.
- **[YOLO11](models/yolo11.md) NEW 🚀**: Ultralytics' latest YOLO models delivering state-of-the-art (SOTA) performance across multiple tasks, including [detection](tasks/detect.md), [segmentation](tasks/segment.md), [pose estimation](tasks/pose.md), [tracking](modes/track.md), and [classification](tasks/classify.md), leverage capabilities across diverse AI applications and domains. - **[YOLO11](models/yolo11.md) 🚀 NEW**: Ultralytics' latest YOLO models delivering state-of-the-art (SOTA) performance across multiple tasks, including [detection](tasks/detect.md), [segmentation](tasks/segment.md), [pose estimation](tasks/pose.md), [tracking](modes/track.md), and [classification](tasks/classify.md), leverage capabilities across diverse AI applications and domains.
## YOLO Licenses: How is Ultralytics YOLO licensed? ## YOLO Licenses: How is Ultralytics YOLO licensed?

@ -181,7 +181,7 @@ There are over 💯 keyword arguments for all of the various Ultralytics [tasks]
conf=0.25, # (float) minimum confidence threshold conf=0.25, # (float) minimum confidence threshold
iou=0.7, # (float) intersection over union (IoU) threshold for NMS iou=0.7, # (float) intersection over union (IoU) threshold for NMS
vid_stride=1, # (int) video frame-rate stride vid_stride=1, # (int) video frame-rate stride
stream_buffer=False, # (bool) buffer all streaming frames (True) or return the most recent frame (False) stream_buffer=False, # (bool) buffer incoming frames in a queue (True) or only keep the most recent frame (False)
visualize=False, # (bool) visualize model features visualize=False, # (bool) visualize model features
augment=False, # (bool) apply image augmentation to prediction sources augment=False, # (bool) apply image augmentation to prediction sources
agnostic_nms=False, # (bool) class-agnostic NMS agnostic_nms=False, # (bool) class-agnostic NMS

@ -1,17 +1,17 @@
| Argument | Type | Default | Description | | Argument | Type | Default | Description |
| --------------- | -------------- | ---------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | --------------- | -------------- | ---------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `source` | `str` | `'ultralytics/assets'` | Specifies the data source for inference. Can be an image path, video file, directory, URL, or device ID for live feeds. Supports a wide range of formats and sources, enabling flexible application across [different types of input](/modes/predict.md/#inference-sources). | | `source` | `str` | `'ultralytics/assets'` | Specifies the data source for inference. Can be an image path, video file, directory, URL, or device ID for live feeds. Supports a wide range of formats and sources, enabling flexible application across [different types of input](/modes/predict.md/#inference-sources). |
| `conf` | `float` | `0.25` | Sets the minimum confidence threshold for detections. Objects detected with confidence below this threshold will be disregarded. Adjusting this value can help reduce false positives. | | `conf` | `float` | `0.25` | Sets the minimum confidence threshold for detections. Objects detected with confidence below this threshold will be disregarded. Adjusting this value can help reduce false positives. |
| `iou` | `float` | `0.7` | [Intersection Over Union](https://www.ultralytics.com/glossary/intersection-over-union-iou) (IoU) threshold for Non-Maximum Suppression (NMS). Lower values result in fewer detections by eliminating overlapping boxes, useful for reducing duplicates. | | `iou` | `float` | `0.7` | [Intersection Over Union](https://www.ultralytics.com/glossary/intersection-over-union-iou) (IoU) threshold for Non-Maximum Suppression (NMS). Lower values result in fewer detections by eliminating overlapping boxes, useful for reducing duplicates. |
| `imgsz` | `int or tuple` | `640` | Defines the image size for inference. Can be a single integer `640` for square resizing or a (height, width) tuple. Proper sizing can improve detection [accuracy](https://www.ultralytics.com/glossary/accuracy) and processing speed. | | `imgsz` | `int or tuple` | `640` | Defines the image size for inference. Can be a single integer `640` for square resizing or a (height, width) tuple. Proper sizing can improve detection [accuracy](https://www.ultralytics.com/glossary/accuracy) and processing speed. |
| `half` | `bool` | `False` | Enables half-[precision](https://www.ultralytics.com/glossary/precision) (FP16) inference, which can speed up model inference on supported GPUs with minimal impact on accuracy. | | `half` | `bool` | `False` | Enables half-[precision](https://www.ultralytics.com/glossary/precision) (FP16) inference, which can speed up model inference on supported GPUs with minimal impact on accuracy. |
| `device` | `str` | `None` | Specifies the device for inference (e.g., `cpu`, `cuda:0` or `0`). Allows users to select between CPU, a specific GPU, or other compute devices for model execution. | | `device` | `str` | `None` | Specifies the device for inference (e.g., `cpu`, `cuda:0` or `0`). Allows users to select between CPU, a specific GPU, or other compute devices for model execution. |
| `max_det` | `int` | `300` | Maximum number of detections allowed per image. Limits the total number of objects the model can detect in a single inference, preventing excessive outputs in dense scenes. | | `max_det` | `int` | `300` | Maximum number of detections allowed per image. Limits the total number of objects the model can detect in a single inference, preventing excessive outputs in dense scenes. |
| `vid_stride` | `int` | `1` | Frame stride for video inputs. Allows skipping frames in videos to speed up processing at the cost of temporal resolution. A value of 1 processes every frame, higher values skip frames. | | `vid_stride` | `int` | `1` | Frame stride for video inputs. Allows skipping frames in videos to speed up processing at the cost of temporal resolution. A value of 1 processes every frame, higher values skip frames. |
| `stream_buffer` | `bool` | `False` | Determines the frame processing strategy for video streams. If `False` processing only the most recent frame, minimizing latency (optimized for real-time applications). If `True' processes all frames in order, ensuring no frames are skipped. | | `stream_buffer` | `bool` | `False` | Determines whether to queue incoming frames for video streams. If `False`, old frames get dropped to accomodate new frames (optimized for real-time applications). If `True', queues new frames in a buffer, ensuring no frames get skipped, but will cause latency if inference FPS is lower than stream FPS. |
| `visualize` | `bool` | `False` | Activates visualization of model features during inference, providing insights into what the model is "seeing". Useful for debugging and model interpretation. | | `visualize` | `bool` | `False` | Activates visualization of model features during inference, providing insights into what the model is "seeing". Useful for debugging and model interpretation. |
| `augment` | `bool` | `False` | Enables test-time augmentation (TTA) for predictions, potentially improving detection robustness at the cost of inference speed. | | `augment` | `bool` | `False` | Enables test-time augmentation (TTA) for predictions, potentially improving detection robustness at the cost of inference speed. |
| `agnostic_nms` | `bool` | `False` | Enables class-agnostic Non-Maximum Suppression (NMS), which merges overlapping boxes of different classes. Useful in multi-class detection scenarios where class overlap is common. | | `agnostic_nms` | `bool` | `False` | Enables class-agnostic Non-Maximum Suppression (NMS), which merges overlapping boxes of different classes. Useful in multi-class detection scenarios where class overlap is common. |
| `classes` | `list[int]` | `None` | Filters predictions to a set of class IDs. Only detections belonging to the specified classes will be returned. Useful for focusing on relevant objects in multi-class detection tasks. | | `classes` | `list[int]` | `None` | Filters predictions to a set of class IDs. Only detections belonging to the specified classes will be returned. Useful for focusing on relevant objects in multi-class detection tasks. |
| `retina_masks` | `bool` | `False` | Uses high-resolution segmentation masks if available in the model. This can enhance mask quality for segmentation tasks, providing finer detail. | | `retina_masks` | `bool` | `False` | Uses high-resolution segmentation masks if available in the model. This can enhance mask quality for segmentation tasks, providing finer detail. |
| `embed` | `list[int]` | `None` | Specifies the layers from which to extract feature vectors or [embeddings](https://www.ultralytics.com/glossary/embeddings). Useful for downstream tasks like clustering or similarity search. | | `embed` | `list[int]` | `None` | Specifies the layers from which to extract feature vectors or [embeddings](https://www.ultralytics.com/glossary/embeddings). Useful for downstream tasks like clustering or similarity search. |

@ -22,7 +22,7 @@ Here are some of the key models supported:
6. **[YOLOv8](yolov8.md)**: The latest version of the YOLO family, featuring enhanced capabilities such as [instance segmentation](https://www.ultralytics.com/glossary/instance-segmentation), pose/keypoints estimation, and classification. 6. **[YOLOv8](yolov8.md)**: The latest version of the YOLO family, featuring enhanced capabilities such as [instance segmentation](https://www.ultralytics.com/glossary/instance-segmentation), pose/keypoints estimation, and classification.
7. **[YOLOv9](yolov9.md)**: An experimental model trained on the Ultralytics [YOLOv5](yolov5.md) codebase implementing Programmable Gradient Information (PGI). 7. **[YOLOv9](yolov9.md)**: An experimental model trained on the Ultralytics [YOLOv5](yolov5.md) codebase implementing Programmable Gradient Information (PGI).
8. **[YOLOv10](yolov10.md)**: By Tsinghua University, featuring NMS-free training and efficiency-accuracy driven architecture, delivering state-of-the-art performance and latency. 8. **[YOLOv10](yolov10.md)**: By Tsinghua University, featuring NMS-free training and efficiency-accuracy driven architecture, delivering state-of-the-art performance and latency.
9. **[YOLO11](yolo11.md) NEW 🚀**: Ultralytics' latest YOLO models delivering state-of-the-art (SOTA) performance across multiple tasks. 9. **[YOLO11](yolo11.md) 🚀 NEW**: Ultralytics' latest YOLO models delivering state-of-the-art (SOTA) performance across multiple tasks.
10. **[Segment Anything Model (SAM)](sam.md)**: Meta's original Segment Anything Model (SAM). 10. **[Segment Anything Model (SAM)](sam.md)**: Meta's original Segment Anything Model (SAM).
11. **[Segment Anything Model 2 (SAM2)](sam-2.md)**: The next generation of Meta's Segment Anything Model (SAM) for videos and images. 11. **[Segment Anything Model 2 (SAM2)](sam-2.md)**: The next generation of Meta's Segment Anything Model (SAM) for videos and images.
12. **[Mobile Segment Anything Model (MobileSAM)](mobile-sam.md)**: MobileSAM for mobile applications, by Kyung Hee University. 12. **[Mobile Segment Anything Model (MobileSAM)](mobile-sam.md)**: MobileSAM for mobile applications, by Kyung Hee University.

@ -14,13 +14,13 @@ YOLO11 is the latest iteration in the [Ultralytics](https://www.ultralytics.com)
<p align="center"> <p align="center">
<br> <br>
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/rfI5vOo3-_A?si=uLCEBVVXwAHiOYqq&amp;start=5500" <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/-JXwa-WlkU8"
title="YouTube video player" frameborder="0" title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen> allowfullscreen>
</iframe> </iframe>
<br> <br>
<strong>Watch:</strong> Ultralytics YOLO11 Announcement at <a href="https://www.ultralytics.com/events/yolovision">YOLO Vision 2024</a> <strong>Watch:</strong> How to Use Ultralytics YOLO11 for Object Detection and Tracking | How to Benchmark | YOLO11 RELEASED🚀
</p> </p>
## Key Features ## Key Features

@ -90,13 +90,14 @@ document.addEventListener("DOMContentLoaded", () => {
}, },
properties: { properties: {
chatButtonType: "PILL", chatButtonType: "PILL",
fixedPositionXOffset: "1rem",
fixedPositionYOffset: "3rem", fixedPositionYOffset: "3rem",
chatButtonBgColor: "#F3F3F3", chatButtonBgColor: "#E1FF25",
baseSettings: { baseSettings: {
apiKey: "13dfec2e75982bc9bae3199a08e13b86b5fbacd64e9b2f89", // required apiKey: "13dfec2e75982bc9bae3199a08e13b86b5fbacd64e9b2f89", // required
integrationId: "cm1shscmm00y26sj83lgxzvkw", // required integrationId: "cm1shscmm00y26sj83lgxzvkw", // required
organizationId: "org_e3869az6hQZ0mXdF", // required organizationId: "org_e3869az6hQZ0mXdF", // required
primaryBrandColor: "#111F68", // Ultralytics brand color primaryBrandColor: "#E1FF25", // Ultralytics brand color
organizationDisplayName: "Ultralytics", organizationDisplayName: "Ultralytics",
theme: { theme: {
stylesheetUrls: ["../stylesheets/style.css"], stylesheetUrls: ["../stylesheets/style.css"],

@ -164,7 +164,7 @@ nav:
- guides/index.md - guides/index.md
- Explorer: - Explorer:
- datasets/explorer/index.md - datasets/explorer/index.md
- NEW 🚀 Live Inference: guides/streamlit-live-inference.md # for promotion of new pages - Live Inference 🚀 NEW: guides/streamlit-live-inference.md # for promotion of new pages
- Languages: - Languages:
- 🇬🇧&nbsp English: https://ultralytics.com/docs/ - 🇬🇧&nbsp English: https://ultralytics.com/docs/
- 🇨🇳&nbsp 简体中文: https://docs.ultralytics.com/zh/ - 🇨🇳&nbsp 简体中文: https://docs.ultralytics.com/zh/
@ -251,7 +251,7 @@ nav:
- YOLOv8: models/yolov8.md - YOLOv8: models/yolov8.md
- YOLOv9: models/yolov9.md - YOLOv9: models/yolov9.md
- YOLOv10: models/yolov10.md - YOLOv10: models/yolov10.md
- NEW 🚀 YOLO11: models/yolo11.md - YOLO11 🚀 NEW: models/yolo11.md
- SAM (Segment Anything Model): models/sam.md - SAM (Segment Anything Model): models/sam.md
- SAM 2 (Segment Anything Model 2): models/sam-2.md - SAM 2 (Segment Anything Model 2): models/sam-2.md
- MobileSAM (Mobile Segment Anything Model): models/mobile-sam.md - MobileSAM (Mobile Segment Anything Model): models/mobile-sam.md
@ -314,7 +314,7 @@ nav:
- DOTA8: datasets/obb/dota8.md - DOTA8: datasets/obb/dota8.md
- Multi-Object Tracking: - Multi-Object Tracking:
- datasets/track/index.md - datasets/track/index.md
- NEW 🚀 Solutions: - Solutions 🚀 NEW:
- solutions/index.md - solutions/index.md
- Analytics: guides/analytics.md - Analytics: guides/analytics.md
- Object Counting: guides/object-counting.md - Object Counting: guides/object-counting.md
@ -330,7 +330,7 @@ nav:
- Distance Calculation: guides/distance-calculation.md - Distance Calculation: guides/distance-calculation.md
- Queue Management: guides/queue-management.md - Queue Management: guides/queue-management.md
- Parking Management: guides/parking-management.md - Parking Management: guides/parking-management.md
- NEW 🚀 Live Inference: guides/streamlit-live-inference.md - Live Inference 🚀 NEW: guides/streamlit-live-inference.md
- Guides: - Guides:
- guides/index.md - guides/index.md
- YOLO Common Issues: guides/yolo-common-issues.md - YOLO Common Issues: guides/yolo-common-issues.md

Loading…
Cancel
Save