if:(github.event.comment.body == 'recheck' || github.event.comment.body == 'I have read the CLA Document and I sign the CLA') || github.event_name == 'pull_request_target'
See our [Contributing Guide](https://github.com/ultralytics/ultralytics/blob/main/CONTRIBUTING.md) for details and let us know if you have any questions!
issue-message:|
👋 Hello @${{ github.actor }}, thank you for your interest in YOLOv8 🚀! We recommend a visit to the [YOLOv8 Docs](https://docs.ultralytics.com) for new users where you can find many [Python](https://docs.ultralytics.com/python/) and [CLI](https://docs.ultralytics.com/cli/) usage examples and where many of the most common questions may already be answered.
👋 Hello @${{ github.actor }}, thank you for your interest in YOLOv8 🚀! We recommend a visit to the [YOLOv8 Docs](https://docs.ultralytics.com) for new users where you can find many [Python](https://docs.ultralytics.com/usage/python/) and [CLI](https://docs.ultralytics.com/usage/cli/) usage examples and where many of the most common questions may already be answered.
If this is a 🐛 Bug Report, please provide a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us debug it.
"Train YOLOv8 on [Detection](https://docs.ultralytics.com/tasks/detection/), [Segmentation](https://docs.ultralytics.com/tasks/segmentation/) and [Classification](https://docs.ultralytics.com/tasks/classification/) datasets."
"Train YOLOv8 on [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/) and [Classification](https://docs.ultralytics.com/tasks/classify/) datasets."
]
},
{
@ -509,7 +509,7 @@
"source": [
"# 5. Python Usage\n",
"\n",
"YOLOv8 was reimagined using Python-first principles for the most seamless Python YOLO experience yet. YOLOv8 models can be loaded from a trained checkpoint or created from scratch. Then methods are used to train, val, predict, and export the model. See a detailed Python usage examples in the YOLOv8 [Docs](https://docs.ultralytics.com/python/)."
"YOLOv8 was reimagined using Python-first principles for the most seamless Python YOLO experience yet. YOLOv8 models can be loaded from a trained checkpoint or created from scratch. Then methods are used to train, val, predict, and export the model. See a detailed Python usage examples in the YOLOv8 [Docs](https://docs.ultralytics.com/usage/python/)."
],
"metadata": {
"id": "kUMOQ0OeDBJG"
@ -554,7 +554,7 @@
"source": [
"## 1. Detection\n",
"\n",
"YOLOv8 _detection_ models have no suffix and are the default YOLOv8 models, i.e. `yolov8n.pt` and are pretrained on COCO. See [Detection Docs](https://docs.ultralytics.com/tasks/detection/) for full details.\n"
"YOLOv8 _detection_ models have no suffix and are the default YOLOv8 models, i.e. `yolov8n.pt` and are pretrained on COCO. See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for full details.\n"
],
"metadata": {
"id": "yq26lwpYK1lq"
@ -581,7 +581,7 @@
"source": [
"## 2. Segmentation\n",
"\n",
"YOLOv8 _segmentation_ models use the `-seg` suffix, i.e. `yolov8n-seg.pt` and are pretrained on COCO. See [Segmentation Docs](https://docs.ultralytics.com/tasks/segmentation/) for full details.\n"
"YOLOv8 _segmentation_ models use the `-seg` suffix, i.e. `yolov8n-seg.pt` and are pretrained on COCO. See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for full details.\n"
],
"metadata": {
"id": "7ZW58jUzK66B"
@ -608,7 +608,7 @@
"source": [
"## 3. Classification\n",
"\n",
"YOLOv8 _classification_ models use the `-cls` suffix, i.e. `yolov8n-cls.pt` and are pretrained on ImageNet. See [Classification Docs](https://docs.ultralytics.com/tasks/classification/) for full details.\n"
"YOLOv8 _classification_ models use the `-cls` suffix, i.e. `yolov8n-cls.pt` and are pretrained on ImageNet. See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for full details.\n"