| `bgr` | `float` | `0.0` | `0.0 - 1.0` | Flips the image channels from RGB to BGR with the specified probability, useful for increasing robustness to incorrect channel ordering. |
| `mosaic` | `float` | `1.0` | `0.0 - 1.0` | Combines four training images into one, simulating different scene compositions and object interactions. Highly effective for complex scene understanding. |
| `mixup` | `float` | `0.0` | `0.0 - 1.0` | Blends two images and their labels, creating a composite image. Enhances the model's ability to generalize by introducing label noise and visual variability. |
| `copy_paste` | `float` | `0.0` | `0.0 - 1.0` | Copies objects from one image and pastes them onto another, useful for increasing object instances and learning object occlusion. |
| `copy_paste` | `float` | `0.0` | `0.0 - 1.0` | Copies and pastes objects across images, useful for increasing object instances and learning object occlusion. Requires segmentation labels. |
| `copy_paste_mode` | `str` | `flip` | - | Copy-Paste augmentation method selection among the options of (`"flip"`, `"mixup"`). |
| `auto_augment` | `str` | `randaugment` | - | Automatically applies a predefined augmentation policy (`randaugment`, `autoaugment`, `augmix`), optimizing for classification tasks by diversifying the visual features. |
| `erasing` | `float` | `0.4` | `0.0 - 0.9` | Randomly erases a portion of the image during classification training, encouraging the model to focus on less obvious features for recognition. |
@ -29,7 +29,6 @@ Here's our curated list of Ultralytics solutions that can be used to create awes
- [Parking Management](../guides/parking-management.md) 🚀: Organize and direct vehicle flow in parking areas with YOLO11, optimizing space utilization and user experience.
- [Analytics](../guides/analytics.md) 📊: Conduct comprehensive data analysis to discover patterns and make informed decisions, leveraging YOLO11 for descriptive, predictive, and prescriptive analytics.
- [Live Inference with Streamlit](../guides/streamlit-live-inference.md) 🚀: Leverage the power of YOLO11 for real-time [object detection](https://www.ultralytics.com/glossary/object-detection) directly through your web browser with a user-friendly Streamlit interface.
- [Live Inference with Streamlit](../guides/streamlit-live-inference.md) 🚀: Leverage the power of YOLO11 for real-time [object detection](https://www.ultralytics.com/glossary/object-detection) directly through your web browser with a user-friendly Streamlit interface.
- [Track Objects in Zone](../guides/trackzone.md) 🎯 NEW: Learn how to track objects within specific zones of video frames using YOLO11 for precise and efficient monitoring.
## Solutions Usage
@ -39,7 +38,7 @@ Here's our curated list of Ultralytics solutions that can be used to create awes
`yolo SOLUTIONS SOLUTION_NAME ARGS`
- **SOLUTIONS** is a required keyword.
- **SOLUTION_NAME** (optional) is one of: `['count', 'heatmap', 'queue', 'speed', 'workout', 'analytics']`.
- **SOLUTION_NAME** (optional) is one of: `['count', 'heatmap', 'queue', 'speed', 'workout', 'analytics', 'trackzone']`.
- **ARGS** (optional) are custom `arg=value` pairs, such as `show_in=True`, to override default settings.