`ultralytics 8.1.27` batched tracking fixes (#8842)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/8851/head^2 v8.1.27
Laughing 8 months ago committed by GitHub
parent 3555785167
commit 2ea6b2b889
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 2
      tests/test_python.py
  2. 2
      ultralytics/__init__.py
  3. 23
      ultralytics/data/loaders.py
  4. 27
      ultralytics/engine/predictor.py
  5. 15
      ultralytics/trackers/track.py

@ -301,7 +301,7 @@ def test_predict_callback_and_setup():
def on_predict_batch_end(predictor):
"""Callback function that handles operations at the end of a prediction batch."""
path, im0s, _, _ = predictor.batch
path, im0s, _ = predictor.batch
im0s = im0s if isinstance(im0s, list) else [im0s]
bs = [predictor.dataset.bs for _ in range(len(path))]
predictor.results = zip(predictor.results, im0s, bs) # results is List[batch_size]

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = "8.1.26"
__version__ = "8.1.27"
from ultralytics.data.explorer.explorer import Explorer
from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld

@ -80,8 +80,6 @@ class LoadStreams:
self.imgs = [[] for _ in range(n)] # images
self.shape = [[] for _ in range(n)] # image shapes
self.sources = [ops.clean_str(x) for x in sources] # clean source names for later
self.info = [""] * n
self.is_video = [True] * n
for i, s in enumerate(sources): # index, source
# Start thread to read frames from video stream
st = f"{i + 1}/{n}: {s}... "
@ -178,7 +176,7 @@ class LoadStreams:
images.append(x.pop(-1) if x else np.zeros(self.shape[i], dtype=np.uint8))
x.clear()
return self.sources, images, self.is_video, self.info
return self.sources, images, [""] * self.bs
def __len__(self):
"""Return the length of the sources object."""
@ -227,6 +225,7 @@ class LoadScreenshots:
self.frame = 0
self.sct = mss.mss()
self.bs = 1
self.fps = 30
# Parse monitor shape
monitor = self.sct.monitors[self.screen]
@ -246,7 +245,7 @@ class LoadScreenshots:
s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "
self.frame += 1
return [str(self.screen)], [im0], [True], [s] # screen, img, is_video, string
return [str(self.screen)], [im0], [s] # screen, img, string
class LoadImagesAndVideos:
@ -298,6 +297,7 @@ class LoadImagesAndVideos:
self.files = images + videos
self.nf = ni + nv # number of files
self.ni = ni # number of images
self.video_flag = [False] * ni + [True] * nv
self.mode = "image"
self.vid_stride = vid_stride # video frame-rate stride
@ -319,11 +319,11 @@ class LoadImagesAndVideos:
def __next__(self):
"""Returns the next batch of images or video frames along with their paths and metadata."""
paths, imgs, is_video, info = [], [], [], []
paths, imgs, info = [], [], []
while len(imgs) < self.bs:
if self.count >= self.nf: # end of file list
if len(imgs) > 0:
return paths, imgs, is_video, info # return last partial batch
return paths, imgs, info # return last partial batch
else:
raise StopIteration
@ -344,7 +344,6 @@ class LoadImagesAndVideos:
self.frame += 1
paths.append(path)
imgs.append(im0)
is_video.append(True)
info.append(f"video {self.count + 1}/{self.nf} (frame {self.frame}/{self.frames}) {path}: ")
if self.frame == self.frames: # end of video
self.count += 1
@ -363,16 +362,18 @@ class LoadImagesAndVideos:
raise FileNotFoundError(f"Image Not Found {path}")
paths.append(path)
imgs.append(im0)
is_video.append(False) # no capture object for images
info.append(f"image {self.count + 1}/{self.nf} {path}: ")
self.count += 1 # move to the next file
if self.count >= self.ni: # end of image list
break
return paths, imgs, is_video, info
return paths, imgs, info
def _new_video(self, path):
"""Creates a new video capture object for the given path."""
self.frame = 0
self.cap = cv2.VideoCapture(path)
self.fps = int(self.cap.get(cv2.CAP_PROP_FPS))
if not self.cap.isOpened():
raise FileNotFoundError(f"Failed to open video {path}")
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
@ -429,7 +430,7 @@ class LoadPilAndNumpy:
if self.count == 1: # loop only once as it's batch inference
raise StopIteration
self.count += 1
return self.paths, self.im0, [False] * self.bs, [""] * self.bs
return self.paths, self.im0, [""] * self.bs
def __iter__(self):
"""Enables iteration for class LoadPilAndNumpy."""
@ -494,7 +495,7 @@ class LoadTensor:
if self.count == 1:
raise StopIteration
self.count += 1
return self.paths, self.im0, [False] * self.bs, [""] * self.bs
return self.paths, self.im0, [""] * self.bs
def __len__(self):
"""Returns the batch size."""

@ -30,6 +30,7 @@ Usage - formats:
"""
import platform
import re
import threading
from pathlib import Path
@ -236,7 +237,7 @@ class BasePredictor:
self.run_callbacks("on_predict_start")
for self.batch in self.dataset:
self.run_callbacks("on_predict_batch_start")
paths, im0s, is_video, s = self.batch
paths, im0s, s = self.batch
# Preprocess
with profilers[0]:
@ -264,7 +265,7 @@ class BasePredictor:
"postprocess": profilers[2].dt * 1e3 / n,
}
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
s[i] += self.write_results(i, Path(paths[i]), im, is_video)
s[i] += self.write_results(i, Path(paths[i]), im, s)
# Print batch results
if self.args.verbose:
@ -308,7 +309,7 @@ class BasePredictor:
self.args.half = self.model.fp16 # update half
self.model.eval()
def write_results(self, i, p, im, is_video):
def write_results(self, i, p, im, s):
"""Write inference results to a file or directory."""
string = "" # print string
if len(im.shape) == 3:
@ -317,9 +318,10 @@ class BasePredictor:
string += f"{i}: "
frame = self.dataset.count
else:
frame = getattr(self.dataset, "frame", 0) - len(self.results) + i
match = re.search(r"frame (\d+)/", s[i])
frame = int(match.group(1)) if match else None # 0 if frame undetermined
self.txt_path = self.save_dir / "labels" / (p.stem + (f"_{frame}" if is_video[i] else ""))
self.txt_path = self.save_dir / "labels" / (p.stem + ("" if self.dataset.mode == "image" else f"_{frame}"))
string += "%gx%g " % im.shape[2:]
result = self.results[i]
result.save_dir = self.save_dir.__str__() # used in other locations
@ -341,18 +343,19 @@ class BasePredictor:
if self.args.save_crop:
result.save_crop(save_dir=self.save_dir / "crops", file_name=self.txt_path.stem)
if self.args.show:
self.show(str(p), is_video[i])
self.show(str(p))
if self.args.save:
self.save_predicted_images(str(self.save_dir / p.name), is_video[i], frame)
self.save_predicted_images(str(self.save_dir / p.name), frame)
return string
def save_predicted_images(self, save_path="", is_video=False, frame=0):
def save_predicted_images(self, save_path="", frame=0):
"""Save video predictions as mp4 at specified path."""
im = self.plotted_img
# Save videos and streams
if is_video:
if self.dataset.mode in {"stream", "video"}:
fps = self.dataset.fps if self.dataset.mode == "video" else 30
frames_path = f'{save_path.split(".", 1)[0]}_frames/'
if save_path not in self.vid_writer: # new video
if self.args.save_frames:
@ -361,7 +364,7 @@ class BasePredictor:
self.vid_writer[save_path] = cv2.VideoWriter(
filename=str(Path(save_path).with_suffix(suffix)),
fourcc=cv2.VideoWriter_fourcc(*fourcc),
fps=30, # integer required, floats produce error in MP4 codec
fps=fps, # integer required, floats produce error in MP4 codec
frameSize=(im.shape[1], im.shape[0]), # (width, height)
)
@ -374,7 +377,7 @@ class BasePredictor:
else:
cv2.imwrite(save_path, im)
def show(self, p="", is_video=False):
def show(self, p=""):
"""Display an image in a window using OpenCV imshow()."""
im = self.plotted_img
if platform.system() == "Linux" and p not in self.windows:
@ -382,7 +385,7 @@ class BasePredictor:
cv2.namedWindow(p, cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(p, im.shape[1], im.shape[0]) # (width, height)
cv2.imshow(p, im)
cv2.waitKey(1 if is_video else 500) # 1 millisecond
cv2.waitKey(300 if self.dataset.mode == "image" else 1) # 1 millisecond
def run_callbacks(self, event: str):
"""Runs all registered callbacks for a specific event."""

@ -38,6 +38,8 @@ def on_predict_start(predictor: object, persist: bool = False) -> None:
for _ in range(predictor.dataset.bs):
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
trackers.append(tracker)
if predictor.dataset.mode != "stream": # only need one tracker for other modes.
break
predictor.trackers = trackers
predictor.vid_path = [None] * predictor.dataset.bs # for determining when to reset tracker on new video
@ -50,20 +52,21 @@ def on_predict_postprocess_end(predictor: object, persist: bool = False) -> None
predictor (object): The predictor object containing the predictions.
persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False.
"""
bs = predictor.dataset.bs
path, im0s = predictor.batch[:2]
is_obb = predictor.args.task == "obb"
for i in range(bs):
is_stream = predictor.dataset.mode == "stream"
for i in range(len(im0s)):
tracker = predictor.trackers[i if is_stream else 0]
vid_path = predictor.save_dir / Path(path[i]).name
if not persist and predictor.vid_path[i] != vid_path: # new video
predictor.trackers[i].reset()
predictor.vid_path[i] = vid_path
if not persist and predictor.vid_path[i if is_stream else 0] != vid_path:
tracker.reset()
predictor.vid_path[i if is_stream else 0] = vid_path
det = (predictor.results[i].obb if is_obb else predictor.results[i].boxes).cpu().numpy()
if len(det) == 0:
continue
tracks = predictor.trackers[i].update(det, im0s[i])
tracks = tracker.update(det, im0s[i])
if len(tracks) == 0:
continue
idx = tracks[:, -1].astype(int)

Loading…
Cancel
Save