@ -161,7 +161,7 @@ class Model(nn.Module):
Defaults to None .
Defaults to None .
stream ( bool , optional ) : If True , treats the input source as a continuous stream for predictions .
stream ( bool , optional ) : If True , treats the input source as a continuous stream for predictions .
Defaults to False .
Defaults to False .
* * kwargs ( dict ) : Additional keyword arguments for configuring the prediction process .
* * kwargs ( any ) : Additional keyword arguments for configuring the prediction process .
Returns :
Returns :
( List [ ultralytics . engine . results . Results ] ) : A list of prediction results , encapsulated in the Results class .
( List [ ultralytics . engine . results . Results ] ) : A list of prediction results , encapsulated in the Results class .
@ -368,7 +368,7 @@ class Model(nn.Module):
source ( str | int | PIL . Image | np . ndarray ) : The source of the image for generating embeddings .
source ( str | int | PIL . Image | np . ndarray ) : The source of the image for generating embeddings .
The source can be a file path , URL , PIL image , numpy array , etc . Defaults to None .
The source can be a file path , URL , PIL image , numpy array , etc . Defaults to None .
stream ( bool ) : If True , predictions are streamed . Defaults to False .
stream ( bool ) : If True , predictions are streamed . Defaults to False .
* * kwargs ( dict ) : Additional keyword arguments for configuring the embedding process .
* * kwargs ( any ) : Additional keyword arguments for configuring the embedding process .
Returns :
Returns :
( List [ torch . Tensor ] ) : A list containing the image embeddings .
( List [ torch . Tensor ] ) : A list containing the image embeddings .
@ -406,7 +406,7 @@ class Model(nn.Module):
stream ( bool , optional ) : Treats the input source as a continuous stream for predictions . Defaults to False .
stream ( bool , optional ) : Treats the input source as a continuous stream for predictions . Defaults to False .
predictor ( BasePredictor , optional ) : An instance of a custom predictor class for making predictions .
predictor ( BasePredictor , optional ) : An instance of a custom predictor class for making predictions .
If None , the method uses a default predictor . Defaults to None .
If None , the method uses a default predictor . Defaults to None .
* * kwargs ( dict ) : Additional keyword arguments for configuring the prediction process . These arguments allow
* * kwargs ( any ) : Additional keyword arguments for configuring the prediction process . These arguments allow
for further customization of the prediction behavior .
for further customization of the prediction behavior .
Returns :
Returns :
@ -460,7 +460,7 @@ class Model(nn.Module):
source ( str , optional ) : The input source for object tracking . It can be a file path , URL , or video stream .
source ( str , optional ) : The input source for object tracking . It can be a file path , URL , or video stream .
stream ( bool , optional ) : Treats the input source as a continuous video stream . Defaults to False .
stream ( bool , optional ) : Treats the input source as a continuous video stream . Defaults to False .
persist ( bool , optional ) : Persists the trackers between different calls to this method . Defaults to False .
persist ( bool , optional ) : Persists the trackers between different calls to this method . Defaults to False .
* * kwargs ( dict ) : Additional keyword arguments for configuring the tracking process . These arguments allow
* * kwargs ( any ) : Additional keyword arguments for configuring the tracking process . These arguments allow
for further customization of the tracking behavior .
for further customization of the tracking behavior .
Returns :
Returns :
@ -497,7 +497,7 @@ class Model(nn.Module):
Args :
Args :
validator ( BaseValidator , optional ) : An instance of a custom validator class for validating the model . If
validator ( BaseValidator , optional ) : An instance of a custom validator class for validating the model . If
None , the method uses a default validator . Defaults to None .
None , the method uses a default validator . Defaults to None .
* * kwargs ( dict ) : Arbitrary keyword arguments representing the validation configuration . These arguments are
* * kwargs ( any ) : Arbitrary keyword arguments representing the validation configuration . These arguments are
used to customize various aspects of the validation process .
used to customize various aspects of the validation process .
Returns :
Returns :
@ -531,7 +531,7 @@ class Model(nn.Module):
configurable options , users should refer to the ' configuration ' section in the documentation .
configurable options , users should refer to the ' configuration ' section in the documentation .
Args :
Args :
* * kwargs ( dict ) : Arbitrary keyword arguments to customize the benchmarking process . These are combined with
* * kwargs ( any ) : Arbitrary keyword arguments to customize the benchmarking process . These are combined with
default configurations , model - specific arguments , and method defaults .
default configurations , model - specific arguments , and method defaults .
Returns :
Returns :
@ -570,7 +570,7 @@ class Model(nn.Module):
possible arguments , refer to the ' configuration ' section in the documentation .
possible arguments , refer to the ' configuration ' section in the documentation .
Args :
Args :
* * kwargs ( dict ) : Arbitrary keyword arguments to customize the export process . These are combined with the
* * kwargs ( any ) : Arbitrary keyword arguments to customize the export process . These are combined with the
model ' s overrides and method defaults.
model ' s overrides and method defaults.
Returns :
Returns :
@ -607,7 +607,7 @@ class Model(nn.Module):
Args :
Args :
trainer ( BaseTrainer , optional ) : An instance of a custom trainer class for training the model . If None , the
trainer ( BaseTrainer , optional ) : An instance of a custom trainer class for training the model . If None , the
method uses a default trainer . Defaults to None .
method uses a default trainer . Defaults to None .
* * kwargs ( dict ) : Arbitrary keyword arguments representing the training configuration . These arguments are
* * kwargs ( any ) : Arbitrary keyword arguments representing the training configuration . These arguments are
used to customize various aspects of the training process .
used to customize various aspects of the training process .
Returns :
Returns :
@ -679,7 +679,7 @@ class Model(nn.Module):
use_ray ( bool ) : If True , uses Ray Tune for hyperparameter tuning . Defaults to False .
use_ray ( bool ) : If True , uses Ray Tune for hyperparameter tuning . Defaults to False .
iterations ( int ) : The number of tuning iterations to perform . Defaults to 10.
iterations ( int ) : The number of tuning iterations to perform . Defaults to 10.
* args ( list ) : Variable length argument list for additional arguments .
* args ( list ) : Variable length argument list for additional arguments .
* * kwargs ( dict ) : Arbitrary keyword arguments . These are combined with the model ' s overrides and defaults.
* * kwargs ( any ) : Arbitrary keyword arguments . These are combined with the model ' s overrides and defaults.
Returns :
Returns :
( dict ) : A dictionary containing the results of the hyperparameter search .
( dict ) : A dictionary containing the results of the hyperparameter search .