Merge branch 'main' into yolov9

pull/8571/head
Glenn Jocher 11 months ago committed by GitHub
commit 2ab5c48db8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 2
      docs/en/guides/yolo-performance-metrics.md
  2. 4
      docs/en/reference/utils/metrics.md
  3. 37
      ultralytics/engine/exporter.py
  4. 2
      ultralytics/models/yolo/detect/val.py
  5. 6
      ultralytics/trackers/byte_tracker.py
  6. 6
      ultralytics/utils/metrics.py
  7. 4
      ultralytics/utils/ops.py
  8. 6
      ultralytics/utils/tal.py

@ -18,7 +18,7 @@ Performance metrics are key tools to evaluate the accuracy and efficiency of obj
allowfullscreen> allowfullscreen>
</iframe> </iframe>
<br> <br>
<strong>Watch:</strong> Ultralytics YOLOv8 Performance Metrics | MAP, F1 Score, Precision, IOU & Accuracy <strong>Watch:</strong> Ultralytics YOLOv8 Performance Metrics | MAP, F1 Score, Precision, IoU & Accuracy
</p> </p>
## Object Detection Metrics ## Object Detection Metrics

@ -1,6 +1,6 @@
--- ---
description: Explore Ultralytics YOLO metrics tools - from confusion matrix, detection metrics, pose metrics to box IOU. Learn how to compute and plot precision-recall curves. description: Explore Ultralytics YOLO metrics tools - from confusion matrix, detection metrics, pose metrics to box IoU. Learn how to compute and plot precision-recall curves.
keywords: Ultralytics, YOLO, YOLOv3, YOLOv4, metrics, confusion matrix, detection metrics, pose metrics, box IOU, mask IOU, plot precision-recall curves, compute average precision keywords: Ultralytics, YOLO, YOLOv3, YOLOv4, metrics, confusion matrix, detection metrics, pose metrics, box IoU, mask IoU, plot precision-recall curves, compute average precision
--- ---
# Reference for `ultralytics/utils/metrics.py` # Reference for `ultralytics/utils/metrics.py`

@ -41,6 +41,7 @@ Inference:
yolov8n.tflite # TensorFlow Lite yolov8n.tflite # TensorFlow Lite
yolov8n_edgetpu.tflite # TensorFlow Edge TPU yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle yolov8n_paddle_model # PaddlePaddle
yolov8n_ncnn_model # NCNN
TensorFlow.js: TensorFlow.js:
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
@ -743,10 +744,10 @@ class Exporter:
verbose=True, verbose=True,
msg="https://github.com/ultralytics/ultralytics/issues/5161", msg="https://github.com/ultralytics/ultralytics/issues/5161",
) )
import onnx2tf
f = Path(str(self.file).replace(self.file.suffix, "_saved_model")) f = Path(str(self.file).replace(self.file.suffix, "_saved_model"))
if f.is_dir(): if f.is_dir():
import shutil
shutil.rmtree(f) # delete output folder shutil.rmtree(f) # delete output folder
# Pre-download calibration file to fix https://github.com/PINTO0309/onnx2tf/issues/545 # Pre-download calibration file to fix https://github.com/PINTO0309/onnx2tf/issues/545
@ -760,8 +761,9 @@ class Exporter:
# Export to TF # Export to TF
tmp_file = f / "tmp_tflite_int8_calibration_images.npy" # int8 calibration images file tmp_file = f / "tmp_tflite_int8_calibration_images.npy" # int8 calibration images file
np_data = None
if self.args.int8: if self.args.int8:
verbosity = "--verbosity info" verbosity = "info"
if self.args.data: if self.args.data:
# Generate calibration data for integer quantization # Generate calibration data for integer quantization
LOGGER.info(f"{prefix} collecting INT8 calibration images from 'data={self.args.data}'") LOGGER.info(f"{prefix} collecting INT8 calibration images from 'data={self.args.data}'")
@ -778,16 +780,20 @@ class Exporter:
# mean = images.view(-1, 3).mean(0) # imagenet mean [123.675, 116.28, 103.53] # mean = images.view(-1, 3).mean(0) # imagenet mean [123.675, 116.28, 103.53]
# std = images.view(-1, 3).std(0) # imagenet std [58.395, 57.12, 57.375] # std = images.view(-1, 3).std(0) # imagenet std [58.395, 57.12, 57.375]
np.save(str(tmp_file), images.numpy()) # BHWC np.save(str(tmp_file), images.numpy()) # BHWC
int8 = f'-oiqt -qt per-tensor -cind images "{tmp_file}" "[[[[0, 0, 0]]]]" "[[[[255, 255, 255]]]]"' np_data = [["images", tmp_file, [[[[0, 0, 0]]]], [[[[255, 255, 255]]]]]]
else:
int8 = "-oiqt -qt per-tensor"
else: else:
verbosity = "--non_verbose" verbosity = "error"
int8 = ""
LOGGER.info(f"{prefix} starting TFLite export with onnx2tf {onnx2tf.__version__}...")
cmd = f'onnx2tf -i "{f_onnx}" -o "{f}" -nuo {verbosity} {int8}'.strip() onnx2tf.convert(
LOGGER.info(f"{prefix} running '{cmd}'") input_onnx_file_path=f_onnx,
subprocess.run(cmd, shell=True) output_folder_path=str(f),
not_use_onnxsim=True,
verbosity=verbosity,
output_integer_quantized_tflite=self.args.int8,
quant_type="per-tensor", # "per-tensor" (faster) or "per-channel" (slower but more accurate)
custom_input_op_name_np_data_path=np_data,
)
yaml_save(f / "metadata.yaml", self.metadata) # add metadata.yaml yaml_save(f / "metadata.yaml", self.metadata) # add metadata.yaml
# Remove/rename TFLite models # Remove/rename TFLite models
@ -884,7 +890,10 @@ class Exporter:
quantization = "--quantize_float16" if self.args.half else "--quantize_uint8" if self.args.int8 else "" quantization = "--quantize_float16" if self.args.half else "--quantize_uint8" if self.args.int8 else ""
with spaces_in_path(f_pb) as fpb_, spaces_in_path(f) as f_: # exporter can not handle spaces in path with spaces_in_path(f_pb) as fpb_, spaces_in_path(f) as f_: # exporter can not handle spaces in path
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model {quantization} --output_node_names={outputs} "{fpb_}" "{f_}"' cmd = (
"tensorflowjs_converter "
f'--input_format=tf_frozen_model {quantization} --output_node_names={outputs} "{fpb_}" "{f_}"'
)
LOGGER.info(f"{prefix} running '{cmd}'") LOGGER.info(f"{prefix} running '{cmd}'")
subprocess.run(cmd, shell=True) subprocess.run(cmd, shell=True)
@ -1079,7 +1088,7 @@ class Exporter:
# Save the model # Save the model
model = ct.models.MLModel(pipeline.spec, weights_dir=weights_dir) model = ct.models.MLModel(pipeline.spec, weights_dir=weights_dir)
model.input_description["image"] = "Input image" model.input_description["image"] = "Input image"
model.input_description["iouThreshold"] = f"(optional) IOU threshold override (default: {nms.iouThreshold})" model.input_description["iouThreshold"] = f"(optional) IoU threshold override (default: {nms.iouThreshold})"
model.input_description["confidenceThreshold"] = ( model.input_description["confidenceThreshold"] = (
f"(optional) Confidence threshold override (default: {nms.confidenceThreshold})" f"(optional) Confidence threshold override (default: {nms.confidenceThreshold})"
) )

@ -36,7 +36,7 @@ class DetectionValidator(BaseValidator):
self.class_map = None self.class_map = None
self.args.task = "detect" self.args.task = "detect"
self.metrics = DetMetrics(save_dir=self.save_dir, on_plot=self.on_plot) self.metrics = DetMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
self.iouv = torch.linspace(0.5, 0.95, 10) # iou vector for mAP@0.5:0.95 self.iouv = torch.linspace(0.5, 0.95, 10) # IoU vector for mAP@0.5:0.95
self.niou = self.iouv.numel() self.niou = self.iouv.numel()
self.lb = [] # for autolabelling self.lb = [] # for autolabelling

@ -235,7 +235,7 @@ class BYTETracker:
reset_id(): Resets the ID counter of STrack. reset_id(): Resets the ID counter of STrack.
joint_stracks(tlista, tlistb): Combines two lists of stracks. joint_stracks(tlista, tlistb): Combines two lists of stracks.
sub_stracks(tlista, tlistb): Filters out the stracks present in the second list from the first list. sub_stracks(tlista, tlistb): Filters out the stracks present in the second list from the first list.
remove_duplicate_stracks(stracksa, stracksb): Removes duplicate stracks based on IOU. remove_duplicate_stracks(stracksa, stracksb): Removes duplicate stracks based on IoU.
""" """
def __init__(self, args, frame_rate=30): def __init__(self, args, frame_rate=30):
@ -373,7 +373,7 @@ class BYTETracker:
return [STrack(xyxy, s, c) for (xyxy, s, c) in zip(dets, scores, cls)] if len(dets) else [] # detections return [STrack(xyxy, s, c) for (xyxy, s, c) in zip(dets, scores, cls)] if len(dets) else [] # detections
def get_dists(self, tracks, detections): def get_dists(self, tracks, detections):
"""Calculates the distance between tracks and detections using IOU and fuses scores.""" """Calculates the distance between tracks and detections using IoU and fuses scores."""
dists = matching.iou_distance(tracks, detections) dists = matching.iou_distance(tracks, detections)
# TODO: mot20 # TODO: mot20
# if not self.args.mot20: # if not self.args.mot20:
@ -428,7 +428,7 @@ class BYTETracker:
@staticmethod @staticmethod
def remove_duplicate_stracks(stracksa, stracksb): def remove_duplicate_stracks(stracksa, stracksb):
"""Remove duplicate stracks with non-maximum IOU distance.""" """Remove duplicate stracks with non-maximum IoU distance."""
pdist = matching.iou_distance(stracksa, stracksb) pdist = matching.iou_distance(stracksa, stracksb)
pairs = np.where(pdist < 0.15) pairs = np.where(pdist < 0.15)
dupa, dupb = [], [] dupa, dupb = [], []

@ -24,7 +24,7 @@ def bbox_ioa(box1, box2, iou=False, eps=1e-7):
Args: Args:
box1 (np.ndarray): A numpy array of shape (n, 4) representing n bounding boxes. box1 (np.ndarray): A numpy array of shape (n, 4) representing n bounding boxes.
box2 (np.ndarray): A numpy array of shape (m, 4) representing m bounding boxes. box2 (np.ndarray): A numpy array of shape (m, 4) representing m bounding boxes.
iou (bool): Calculate the standard iou if True else return inter_area/box2_area. iou (bool): Calculate the standard IoU if True else return inter_area/box2_area.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns: Returns:
@ -194,7 +194,7 @@ def _get_covariance_matrix(boxes):
def probiou(obb1, obb2, CIoU=False, eps=1e-7): def probiou(obb1, obb2, CIoU=False, eps=1e-7):
""" """
Calculate the prob iou between oriented bounding boxes, https://arxiv.org/pdf/2106.06072v1.pdf. Calculate the prob IoU between oriented bounding boxes, https://arxiv.org/pdf/2106.06072v1.pdf.
Args: Args:
obb1 (torch.Tensor): A tensor of shape (N, 5) representing ground truth obbs, with xywhr format. obb1 (torch.Tensor): A tensor of shape (N, 5) representing ground truth obbs, with xywhr format.
@ -233,7 +233,7 @@ def probiou(obb1, obb2, CIoU=False, eps=1e-7):
def batch_probiou(obb1, obb2, eps=1e-7): def batch_probiou(obb1, obb2, eps=1e-7):
""" """
Calculate the prob iou between oriented bounding boxes, https://arxiv.org/pdf/2106.06072v1.pdf. Calculate the prob IoU between oriented bounding boxes, https://arxiv.org/pdf/2106.06072v1.pdf.
Args: Args:
obb1 (torch.Tensor | np.ndarray): A tensor of shape (N, 5) representing ground truth obbs, with xywhr format. obb1 (torch.Tensor | np.ndarray): A tensor of shape (N, 5) representing ground truth obbs, with xywhr format.

@ -147,7 +147,7 @@ def nms_rotated(boxes, scores, threshold=0.45):
Args: Args:
boxes (torch.Tensor): (N, 5), xywhr. boxes (torch.Tensor): (N, 5), xywhr.
scores (torch.Tensor): (N, ). scores (torch.Tensor): (N, ).
threshold (float): Iou threshold. threshold (float): IoU threshold.
Returns: Returns:
""" """
@ -287,7 +287,7 @@ def non_max_suppression(
# if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) # if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
# # Update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) # # Update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
# from .metrics import box_iou # from .metrics import box_iou
# iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix # iou = box_iou(boxes[i], boxes) > iou_thres # IoU matrix
# weights = iou * scores[None] # box weights # weights = iou * scores[None] # box weights
# x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes # x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
# redundant = True # require redundant detections # redundant = True # require redundant detections

@ -121,7 +121,7 @@ class TaskAlignedAssigner(nn.Module):
return align_metric, overlaps return align_metric, overlaps
def iou_calculation(self, gt_bboxes, pd_bboxes): def iou_calculation(self, gt_bboxes, pd_bboxes):
"""Iou calculation for horizontal bounding boxes.""" """IoU calculation for horizontal bounding boxes."""
return bbox_iou(gt_bboxes, pd_bboxes, xywh=False, CIoU=True).squeeze(-1).clamp_(0) return bbox_iou(gt_bboxes, pd_bboxes, xywh=False, CIoU=True).squeeze(-1).clamp_(0)
def select_topk_candidates(self, metrics, largest=True, topk_mask=None): def select_topk_candidates(self, metrics, largest=True, topk_mask=None):
@ -231,7 +231,7 @@ class TaskAlignedAssigner(nn.Module):
@staticmethod @staticmethod
def select_highest_overlaps(mask_pos, overlaps, n_max_boxes): def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
""" """
If an anchor box is assigned to multiple gts, the one with the highest IoI will be selected. If an anchor box is assigned to multiple gts, the one with the highest IoU will be selected.
Args: Args:
mask_pos (Tensor): shape(b, n_max_boxes, h*w) mask_pos (Tensor): shape(b, n_max_boxes, h*w)
@ -260,7 +260,7 @@ class TaskAlignedAssigner(nn.Module):
class RotatedTaskAlignedAssigner(TaskAlignedAssigner): class RotatedTaskAlignedAssigner(TaskAlignedAssigner):
def iou_calculation(self, gt_bboxes, pd_bboxes): def iou_calculation(self, gt_bboxes, pd_bboxes):
"""Iou calculation for rotated bounding boxes.""" """IoU calculation for rotated bounding boxes."""
return probiou(gt_bboxes, pd_bboxes).squeeze(-1).clamp_(0) return probiou(gt_bboxes, pd_bboxes).squeeze(-1).clamp_(0)
@staticmethod @staticmethod

Loading…
Cancel
Save