`ultralytics 8.2.9` OpenVINO INT8 fixes and tests (#10423)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>pull/11667/head v8.2.9
parent
299797ff9e
commit
2583f842b8
13 changed files with 250 additions and 206 deletions
@ -0,0 +1,22 @@ |
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license |
||||
|
||||
from ultralytics.utils import ASSETS, ROOT, WEIGHTS_DIR, checks, is_dir_writeable |
||||
|
||||
# Constants used in tests |
||||
MODEL = WEIGHTS_DIR / "path with spaces" / "yolov8n.pt" # test spaces in path |
||||
CFG = "yolov8n.yaml" |
||||
SOURCE = ASSETS / "bus.jpg" |
||||
TMP = (ROOT / "../tests/tmp").resolve() # temp directory for test files |
||||
IS_TMP_WRITEABLE = is_dir_writeable(TMP) |
||||
CUDA_IS_AVAILABLE = checks.cuda_is_available() |
||||
CUDA_DEVICE_COUNT = checks.cuda_device_count() |
||||
|
||||
__all__ = ( |
||||
"MODEL", |
||||
"CFG", |
||||
"SOURCE", |
||||
"TMP", |
||||
"IS_TMP_WRITEABLE", |
||||
"CUDA_IS_AVAILABLE", |
||||
"CUDA_DEVICE_COUNT", |
||||
) |
@ -0,0 +1,128 @@ |
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license |
||||
|
||||
import shutil |
||||
import uuid |
||||
from itertools import product |
||||
from pathlib import Path |
||||
|
||||
import pytest |
||||
|
||||
from ultralytics import YOLO |
||||
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS |
||||
from ultralytics.utils import ( |
||||
IS_RASPBERRYPI, |
||||
LINUX, |
||||
MACOS, |
||||
WINDOWS, |
||||
Retry, |
||||
checks, |
||||
) |
||||
from ultralytics.utils.torch_utils import TORCH_1_9, TORCH_1_13 |
||||
from . import MODEL, SOURCE |
||||
|
||||
# Constants |
||||
EXPORT_PARAMETERS_LIST = [ # generate all combinations but exclude those where both int8 and half are True |
||||
(task, dynamic, int8, half, batch) |
||||
for task, dynamic, int8, half, batch in product(TASKS, [True, False], [True, False], [True, False], [1, 2]) |
||||
if not (int8 and half) # exclude cases where both int8 and half are True |
||||
] |
||||
|
||||
|
||||
def test_export_torchscript(): |
||||
"""Test exporting the YOLO model to TorchScript format.""" |
||||
f = YOLO(MODEL).export(format="torchscript", optimize=False, imgsz=32) |
||||
YOLO(f)(SOURCE, imgsz=32) # exported model inference |
||||
|
||||
|
||||
def test_export_onnx(): |
||||
"""Test exporting the YOLO model to ONNX format.""" |
||||
f = YOLO(MODEL).export(format="onnx", dynamic=True, imgsz=32) |
||||
YOLO(f)(SOURCE, imgsz=32) # exported model inference |
||||
|
||||
|
||||
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="OpenVINO not supported in Python 3.12") |
||||
@pytest.mark.skipif(not TORCH_1_13, reason="OpenVINO requires torch>=1.13") |
||||
def test_export_openvino(): |
||||
"""Test exporting the YOLO model to OpenVINO format.""" |
||||
f = YOLO(MODEL).export(format="openvino", imgsz=32) |
||||
YOLO(f)(SOURCE, imgsz=32) # exported model inference |
||||
|
||||
|
||||
@pytest.mark.slow |
||||
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="OpenVINO not supported in Python 3.12") |
||||
@pytest.mark.skipif(not TORCH_1_13, reason="OpenVINO requires torch>=1.13") |
||||
@pytest.mark.parametrize("task, dynamic, int8, half, batch", EXPORT_PARAMETERS_LIST) |
||||
def test_export_openvino_matrix(task, dynamic, int8, half, batch): |
||||
"""Test exporting the YOLO model to OpenVINO format.""" |
||||
file = YOLO(TASK2MODEL[task]).export( |
||||
format="openvino", |
||||
imgsz=32, |
||||
dynamic=dynamic, |
||||
int8=int8, |
||||
half=half, |
||||
batch=batch, |
||||
data=TASK2DATA[task], |
||||
) |
||||
if WINDOWS: |
||||
# Use unique filenames due to Windows file permissions bug possibly due to latent threaded use |
||||
# See https://github.com/ultralytics/ultralytics/actions/runs/8957949304/job/24601616830?pr=10423 |
||||
file = Path(file) |
||||
file = file.rename(file.with_stem(f"{file.stem}-{uuid.uuid4()}")) |
||||
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference |
||||
with Retry(times=3, delay=1): # retry in case of potential lingering multi-threaded file usage errors |
||||
shutil.rmtree(file) |
||||
|
||||
|
||||
@pytest.mark.skipif(not TORCH_1_9, reason="CoreML>=7.2 not supported with PyTorch<=1.8") |
||||
@pytest.mark.skipif(WINDOWS, reason="CoreML not supported on Windows") # RuntimeError: BlobWriter not loaded |
||||
@pytest.mark.skipif(IS_RASPBERRYPI, reason="CoreML not supported on Raspberry Pi") |
||||
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12") |
||||
def test_export_coreml(): |
||||
"""Test exporting the YOLO model to CoreML format.""" |
||||
if MACOS: |
||||
f = YOLO(MODEL).export(format="coreml", imgsz=32) |
||||
YOLO(f)(SOURCE, imgsz=32) # model prediction only supported on macOS for nms=False models |
||||
else: |
||||
YOLO(MODEL).export(format="coreml", nms=True, imgsz=32) |
||||
|
||||
|
||||
@pytest.mark.skipif(not LINUX, reason="Test disabled as TF suffers from install conflicts on Windows and macOS") |
||||
def test_export_tflite(): |
||||
""" |
||||
Test exporting the YOLO model to TFLite format. |
||||
|
||||
Note TF suffers from install conflicts on Windows and macOS. |
||||
""" |
||||
model = YOLO(MODEL) |
||||
f = model.export(format="tflite", imgsz=32) |
||||
YOLO(f)(SOURCE, imgsz=32) |
||||
|
||||
|
||||
@pytest.mark.skipif(True, reason="Test disabled") |
||||
@pytest.mark.skipif(not LINUX, reason="TF suffers from install conflicts on Windows and macOS") |
||||
def test_export_pb(): |
||||
""" |
||||
Test exporting the YOLO model to *.pb format. |
||||
|
||||
Note TF suffers from install conflicts on Windows and macOS. |
||||
""" |
||||
model = YOLO(MODEL) |
||||
f = model.export(format="pb", imgsz=32) |
||||
YOLO(f)(SOURCE, imgsz=32) |
||||
|
||||
|
||||
@pytest.mark.skipif(True, reason="Test disabled as Paddle protobuf and ONNX protobuf requirementsk conflict.") |
||||
def test_export_paddle(): |
||||
""" |
||||
Test exporting the YOLO model to Paddle format. |
||||
|
||||
Note Paddle protobuf requirements conflicting with onnx protobuf requirements. |
||||
""" |
||||
YOLO(MODEL).export(format="paddle", imgsz=32) |
||||
|
||||
|
||||
@pytest.mark.slow |
||||
def test_export_ncnn(): |
||||
"""Test exporting the YOLO model to NCNN format.""" |
||||
f = YOLO(MODEL).export(format="ncnn", imgsz=32) |
||||
YOLO(f)(SOURCE, imgsz=32) # exported model inference |
Loading…
Reference in new issue