|
|
|
@ -8,6 +8,7 @@ This is the simplest way of simply using yolo models in a python environment. It |
|
|
|
|
|
|
|
|
|
model = YOLO() |
|
|
|
|
model.new("n.yaml") # pass any model type |
|
|
|
|
model(img_tensor) # Or model.forward(). inference. |
|
|
|
|
model.train(data="coco128.yaml", epochs=5) |
|
|
|
|
``` |
|
|
|
|
|
|
|
|
@ -27,8 +28,34 @@ This is the simplest way of simply using yolo models in a python environment. It |
|
|
|
|
|
|
|
|
|
model = YOLO() |
|
|
|
|
model.resume(task="detect") # resume last detection training |
|
|
|
|
model.resume(task="detect", model="last.pt") # resume from a given model |
|
|
|
|
model.resume(model="last.pt") # resume from a given model/run |
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
=== "Visualize/save Predictions" |
|
|
|
|
```python |
|
|
|
|
from ultralytics import YOLO |
|
|
|
|
|
|
|
|
|
model = YOLO() |
|
|
|
|
model.load("model.pt") |
|
|
|
|
model.predict(source="0") # accepts all formats - img/folder/vid.*(mp4/format). 0 for webcam |
|
|
|
|
model.predict(source="folder", view_img=True) # Display preds. Accepts all yolo predict arguments |
|
|
|
|
|
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
!!! note "Export and Deployment" |
|
|
|
|
|
|
|
|
|
=== "Export, Fuse & info" |
|
|
|
|
```python |
|
|
|
|
from ultralytics import YOLO |
|
|
|
|
|
|
|
|
|
model = YOLO() |
|
|
|
|
model.fuse() |
|
|
|
|
model.info(verbose=True) # Print model information |
|
|
|
|
model.export(format=) # TODO: |
|
|
|
|
|
|
|
|
|
``` |
|
|
|
|
=== "Deployment" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
More functionality coming soon |
|
|
|
|
|
|
|
|
|