Merge branch 'main' into yolo-serve

yolo-serve
Ultralytics Assistant 1 month ago committed by GitHub
commit 2355259cec
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 3
      .github/workflows/ci.yaml
  2. 7
      .github/workflows/docker.yaml
  3. 1
      README.md
  4. 1
      README.zh-CN.md
  5. 6
      docs/en/datasets/index.md
  6. 26
      docs/en/models/sam-2.md
  7. 4
      docs/en/modes/export.md
  8. 2
      docs/en/modes/predict.md
  9. 6
      docs/en/tasks/obb.md
  10. 2
      examples/tutorial.ipynb
  11. 3
      pyproject.toml
  12. 2
      tests/test_cuda.py
  13. 2
      ultralytics/__init__.py
  14. 6
      ultralytics/cfg/__init__.py
  15. 15
      ultralytics/cfg/solutions/default.yaml
  16. 3
      ultralytics/data/converter.py
  17. 1
      ultralytics/engine/exporter.py
  18. 8
      ultralytics/models/sam/build.py
  19. 145
      ultralytics/models/sam/modules/sam.py
  20. 1
      ultralytics/solutions/parking_management.py
  21. 18
      ultralytics/solutions/solutions.py
  22. 14
      ultralytics/utils/__init__.py
  23. 2
      ultralytics/utils/checks.py

@ -39,7 +39,8 @@ on:
jobs: jobs:
HUB: HUB:
if: github.repository == 'ultralytics/ultralytics' && (github.event_name == 'schedule' || github.event_name == 'push' || (github.event_name == 'workflow_dispatch' && github.event.inputs.hub == 'true')) # if: github.repository == 'ultralytics/ultralytics' && (github.event_name == 'schedule' || github.event_name == 'push' || (github.event_name == 'workflow_dispatch' && github.event.inputs.hub == 'true'))
if: github.repository == 'ultralytics/ultralytics' && 'workflow_dispatch' && github.event.inputs.hub == 'true'
runs-on: ${{ matrix.os }} runs-on: ${{ matrix.os }}
strategy: strategy:
fail-fast: false fail-fast: false

@ -84,11 +84,8 @@ jobs:
outputs: outputs:
new_release: ${{ steps.check_tag.outputs.new_release }} new_release: ${{ steps.check_tag.outputs.new_release }}
steps: steps:
- name: Cleanup disk - name: Cleanup disk space
# Free up to 30GB of disk space per https://github.com/ultralytics/ultralytics/pull/15848 uses: ultralytics/actions/cleanup-disk@main
uses: jlumbroso/free-disk-space@v1.3.1
with:
tool-cache: true
- name: Checkout repo - name: Checkout repo
uses: actions/checkout@v4 uses: actions/checkout@v4

@ -17,6 +17,7 @@
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run Ultralytics on Gradient"></a> <a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run Ultralytics on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open Ultralytics In Colab"></a> <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open Ultralytics In Colab"></a>
<a href="https://www.kaggle.com/models/ultralytics/yolo11"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a> <a href="https://www.kaggle.com/models/ultralytics/yolo11"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a>
<a href="https://mybinder.org/v2/gh/ultralytics/ultralytics/HEAD?labpath=examples%2Ftutorial.ipynb"><img src="https://mybinder.org/badge_logo.svg" alt="Open Ultralytics In Binder"></a>
</div> </div>
<br> <br>

@ -17,6 +17,7 @@
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run Ultralytics on Gradient"></a> <a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run Ultralytics on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open Ultralytics In Colab"></a> <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open Ultralytics In Colab"></a>
<a href="https://www.kaggle.com/models/ultralytics/yolo11"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a> <a href="https://www.kaggle.com/models/ultralytics/yolo11"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a>
<a href="https://mybinder.org/v2/gh/ultralytics/ultralytics/HEAD?labpath=examples%2Ftutorial.ipynb"><img src="https://mybinder.org/badge_logo.svg" alt="Open Ultralytics In Binder"></a>
</div> </div>
<br> <br>

@ -19,7 +19,11 @@ Ultralytics provides support for various datasets to facilitate computer vision
<strong>Watch:</strong> Ultralytics Datasets Overview <strong>Watch:</strong> Ultralytics Datasets Overview
</p> </p>
## Ultralytics Explorer 🚀 NEW ## Ultralytics Explorer
!!! warning "Community Note ⚠"
As of **`ultralytics>=8.3.10`**, Ultralytics explorer support has been deprecated. But don't worry! You can now access similar and even enhanced functionality through [Ultralytics HUB](https://hub.ultralytics.com/), our intuitive no-code platform designed to streamline your workflow. With Ultralytics HUB, you can continue exploring, visualizing, and managing your data effortlessly, all without writing a single line of code. Make sure to check it out and take advantage of its powerful features!🚀
Create [embeddings](https://www.ultralytics.com/glossary/embeddings) for your dataset, search for similar images, run SQL queries, perform semantic search and even search using natural language! You can get started with our GUI app or build your own using the API. Learn more [here](explorer/index.md). Create [embeddings](https://www.ultralytics.com/glossary/embeddings) for your dataset, search for similar images, run SQL queries, perform semantic search and even search using natural language! You can get started with our GUI app or build your own using the API. Learn more [here](explorer/index.md).

@ -1,9 +1,13 @@
--- ---
comments: true comments: true
description: Discover SAM 2, the next generation of Meta's Segment Anything Model, supporting real-time promptable segmentation in both images and videos with state-of-the-art performance. Learn about its key features, datasets, and how to use it. description: Discover SAM 2, the next generation of Meta's Segment Anything Model, supporting real-time promptable segmentation in both images and videos with state-of-the-art performance. Learn about its key features, datasets, and how to use it.
keywords: SAM 2, Segment Anything, video segmentation, image segmentation, promptable segmentation, zero-shot performance, SA-V dataset, Ultralytics, real-time segmentation, AI, machine learning keywords: SAM 2, SAM 2.1, Segment Anything, video segmentation, image segmentation, promptable segmentation, zero-shot performance, SA-V dataset, Ultralytics, real-time segmentation, AI, machine learning
--- ---
!!! tip "SAM 2.1"
We have just supported the more accurate SAM2.1 model. Please give it a try!
# SAM 2: Segment Anything Model 2 # SAM 2: Segment Anything Model 2
SAM 2, the successor to Meta's [Segment Anything Model (SAM)](sam.md), is a cutting-edge tool designed for comprehensive object segmentation in both images and videos. It excels in handling complex visual data through a unified, promptable model architecture that supports real-time processing and zero-shot generalization. SAM 2, the successor to Meta's [Segment Anything Model (SAM)](sam.md), is a cutting-edge tool designed for comprehensive object segmentation in both images and videos. It excels in handling complex visual data through a unified, promptable model architecture that supports real-time processing and zero-shot generalization.
@ -115,11 +119,15 @@ pip install ultralytics
The following table details the available SAM 2 models, their pre-trained weights, supported tasks, and compatibility with different operating modes like [Inference](../modes/predict.md), [Validation](../modes/val.md), [Training](../modes/train.md), and [Export](../modes/export.md). The following table details the available SAM 2 models, their pre-trained weights, supported tasks, and compatibility with different operating modes like [Inference](../modes/predict.md), [Validation](../modes/val.md), [Training](../modes/train.md), and [Export](../modes/export.md).
| Model Type | Pre-trained Weights | Tasks Supported | Inference | Validation | Training | Export | | Model Type | Pre-trained Weights | Tasks Supported | Inference | Validation | Training | Export |
| ----------- | ------------------------------------------------------------------------------------- | -------------------------------------------- | --------- | ---------- | -------- | ------ | | ------------- | ----------------------------------------------------------------------------------------- | -------------------------------------------- | --------- | ---------- | -------- | ------ |
| SAM 2 tiny | [sam2_t.pt](https://github.com/ultralytics/assets/releases/download/v8.2.0/sam2_t.pt) | [Instance Segmentation](../tasks/segment.md) | ✅ | ❌ | ❌ | ❌ | | SAM 2 tiny | [sam2_t.pt](https://github.com/ultralytics/assets/releases/download/v8.3.0/sam2_t.pt) | [Instance Segmentation](../tasks/segment.md) | ✅ | ❌ | ❌ | ❌ |
| SAM 2 small | [sam2_s.pt](https://github.com/ultralytics/assets/releases/download/v8.2.0/sam2_s.pt) | [Instance Segmentation](../tasks/segment.md) | ✅ | ❌ | ❌ | ❌ | | SAM 2 small | [sam2_s.pt](https://github.com/ultralytics/assets/releases/download/v8.3.0/sam2_s.pt) | [Instance Segmentation](../tasks/segment.md) | ✅ | ❌ | ❌ | ❌ |
| SAM 2 base | [sam2_b.pt](https://github.com/ultralytics/assets/releases/download/v8.2.0/sam2_b.pt) | [Instance Segmentation](../tasks/segment.md) | ✅ | ❌ | ❌ | ❌ | | SAM 2 base | [sam2_b.pt](https://github.com/ultralytics/assets/releases/download/v8.3.0/sam2_b.pt) | [Instance Segmentation](../tasks/segment.md) | ✅ | ❌ | ❌ | ❌ |
| SAM 2 large | [sam2_l.pt](https://github.com/ultralytics/assets/releases/download/v8.2.0/sam2_l.pt) | [Instance Segmentation](../tasks/segment.md) | ✅ | ❌ | ❌ | ❌ | | SAM 2 large | [sam2_l.pt](https://github.com/ultralytics/assets/releases/download/v8.3.0/sam2_l.pt) | [Instance Segmentation](../tasks/segment.md) | ✅ | ❌ | ❌ | ❌ |
| SAM 2.1 tiny | [sam2.1_t.pt](https://github.com/ultralytics/assets/releases/download/v8.3.0/sam2.1_t.pt) | [Instance Segmentation](../tasks/segment.md) | ✅ | ❌ | ❌ | ❌ |
| SAM 2.1 small | [sam2.1_s.pt](https://github.com/ultralytics/assets/releases/download/v8.3.0/sam2.1_s.pt) | [Instance Segmentation](../tasks/segment.md) | ✅ | ❌ | ❌ | ❌ |
| SAM 2.1 base | [sam2.1_b.pt](https://github.com/ultralytics/assets/releases/download/v8.3.0/sam2.1_b.pt) | [Instance Segmentation](../tasks/segment.md) | ✅ | ❌ | ❌ | ❌ |
| SAM 2.1 large | [sam2.1_l.pt](https://github.com/ultralytics/assets/releases/download/v8.3.0/sam2.1_l.pt) | [Instance Segmentation](../tasks/segment.md) | ✅ | ❌ | ❌ | ❌ |
### SAM 2 Prediction Examples ### SAM 2 Prediction Examples
@ -137,7 +145,7 @@ SAM 2 can be utilized across a broad spectrum of tasks, including real-time vide
from ultralytics import SAM from ultralytics import SAM
# Load a model # Load a model
model = SAM("sam2_b.pt") model = SAM("sam2.1_b.pt")
# Display model information (optional) # Display model information (optional)
model.info() model.info()
@ -170,7 +178,7 @@ SAM 2 can be utilized across a broad spectrum of tasks, including real-time vide
from ultralytics import SAM from ultralytics import SAM
# Load a model # Load a model
model = SAM("sam2_b.pt") model = SAM("sam2.1_b.pt")
# Display model information (optional) # Display model information (optional)
model.info() model.info()
@ -183,7 +191,7 @@ SAM 2 can be utilized across a broad spectrum of tasks, including real-time vide
```bash ```bash
# Run inference with a SAM 2 model # Run inference with a SAM 2 model
yolo predict model=sam2_b.pt source=path/to/video.mp4 yolo predict model=sam2.1_b.pt source=path/to/video.mp4
``` ```
- This example demonstrates how SAM 2 can be used to segment the entire content of an image or video if no prompts (bboxes/points/masks) are provided. - This example demonstrates how SAM 2 can be used to segment the entire content of an image or video if no prompts (bboxes/points/masks) are provided.

@ -136,13 +136,13 @@ INT8 quantization is an excellent way to compress the model and speed up inferen
from ultralytics import YOLO from ultralytics import YOLO
model = YOLO("yolo11n.pt") # Load a model model = YOLO("yolo11n.pt") # Load a model
model.export(format="onnx", int8=True) model.export(format="engine", int8=True)
``` ```
=== "CLI" === "CLI"
```bash ```bash
yolo export model=yolo11n.pt format=onnx int8=True # export model with INT8 quantization yolo export model=yolo11n.pt format=engine int8=True # export TensorRT model with INT8 quantization
``` ```
INT8 quantization can be applied to various formats, such as TensorRT and CoreML. More details can be found in the [Export section](../modes/export.md). INT8 quantization can be applied to various formats, such as TensorRT and CoreML. More details can be found in the [Export section](../modes/export.md).

@ -665,7 +665,7 @@ For more details see the [`Probs` class documentation](../reference/engine/resul
model = YOLO("yolo11n-obb.pt") model = YOLO("yolo11n-obb.pt")
# Run inference on an image # Run inference on an image
results = model("bus.jpg") # results list results = model("boats.jpg") # results list
# View results # View results
for r in results: for r in results:

@ -141,14 +141,14 @@ Use a trained YOLO11n-obb model to run predictions on images.
model = YOLO("path/to/best.pt") # load a custom model model = YOLO("path/to/best.pt") # load a custom model
# Predict with the model # Predict with the model
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image results = model("https://ultralytics.com/images/boats.jpg") # predict on an image
``` ```
=== "CLI" === "CLI"
```bash ```bash
yolo obb predict model=yolo11n-obb.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model yolo obb predict model=yolo11n-obb.pt source='https://ultralytics.com/images/boats.jpg' # predict with official model
yolo obb predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model yolo obb predict model=path/to/best.pt source='https://ultralytics.com/images/boats.jpg' # predict with custom model
``` ```
<p align="center"> <p align="center">

@ -583,7 +583,7 @@
"\n", "\n",
"model = YOLO('yolo11n-obb.pt') # load a pretrained YOLO OBB model\n", "model = YOLO('yolo11n-obb.pt') # load a pretrained YOLO OBB model\n",
"model.train(data='dota8.yaml', epochs=3) # train the model\n", "model.train(data='dota8.yaml', epochs=3) # train the model\n",
"model('https://ultralytics.com/images/bus.jpg') # predict on an image" "model('https://ultralytics.com/images/boats.jpg') # predict on an image"
], ],
"metadata": { "metadata": {
"id": "IJNKClOOB5YS" "id": "IJNKClOOB5YS"

@ -61,7 +61,8 @@ classifiers = [
# Required dependencies ------------------------------------------------------------------------------------------------ # Required dependencies ------------------------------------------------------------------------------------------------
dependencies = [ dependencies = [
"numpy>=1.23.0", # temporary patch for compat errors https://github.com/ultralytics/yolov5/actions/runs/9538130424/job/26286956354 "numpy>=1.23.0",
"numpy<2.0.0; sys_platform == 'darwin'", # macOS OpenVINO errors https://github.com/ultralytics/ultralytics/pull/17221
"matplotlib>=3.3.0", "matplotlib>=3.3.0",
"opencv-python>=4.6.0", "opencv-python>=4.6.0",
"pillow>=7.1.2", "pillow>=7.1.2",

@ -116,7 +116,7 @@ def test_predict_sam():
from ultralytics.models.sam import Predictor as SAMPredictor from ultralytics.models.sam import Predictor as SAMPredictor
# Load a model # Load a model
model = SAM(WEIGHTS_DIR / "sam_b.pt") model = SAM(WEIGHTS_DIR / "sam2.1_b.pt")
# Display model information (optional) # Display model information (optional)
model.info() model.info()

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = "8.3.21" __version__ = "8.3.23"
import os import os

@ -802,7 +802,7 @@ def entrypoint(debug=""):
from ultralytics import FastSAM from ultralytics import FastSAM
model = FastSAM(model) model = FastSAM(model)
elif "sam_" in stem or "sam2_" in stem: elif "sam_" in stem or "sam2_" in stem or "sam2.1_" in stem:
from ultralytics import SAM from ultralytics import SAM
model = SAM(model) model = SAM(model)
@ -824,7 +824,9 @@ def entrypoint(debug=""):
# Mode # Mode
if mode in {"predict", "track"} and "source" not in overrides: if mode in {"predict", "track"} and "source" not in overrides:
overrides["source"] = DEFAULT_CFG.source or ASSETS overrides["source"] = (
"https://ultralytics.com/images/boats.jpg" if task == "obb" else DEFAULT_CFG.source or ASSETS
)
LOGGER.warning(f"WARNING ⚠ 'source' argument is missing. Using default 'source={overrides['source']}'.") LOGGER.warning(f"WARNING ⚠ 'source' argument is missing. Using default 'source={overrides['source']}'.")
elif mode in {"train", "val"}: elif mode in {"train", "val"}:
if "data" not in overrides and "resume" not in overrides: if "data" not in overrides and "resume" not in overrides:

@ -1,18 +1,19 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics YOLO 🚀, AGPL-3.0 license
# Configuration for Ultralytics Solutions # Configuration for Ultralytics Solutions
model: "yolo11n.pt" # The Ultralytics YOLO11 model to be used (e.g., yolo11n.pt for YOLO11 nano version and yolov8n.pt for YOLOv8 nano version) # Object counting settings
region: # Object counting, queue or speed estimation region points. Default region points are [(20, 400), (1080, 404), (1080, 360), (20, 360)] region: # Object counting, queue or speed estimation region points. Default region points are [(20, 400), (1080, 404), (1080, 360), (20, 360)]
line_width: 2 # Width of the annotator used to draw regions on the image/video frames + bounding boxes and tracks drawing. Default value is 2.
show: True # Flag to control whether to display output image or not, you can set this as False i.e. when deploying it on some embedded devices.
show_in: True # Flag to display objects moving *into* the defined region show_in: True # Flag to display objects moving *into* the defined region
show_out: True # Flag to display objects moving *out of* the defined region show_out: True # Flag to display objects moving *out of* the defined region
classes: # To count specific classes. i.e, if you want to detect, track and count the person with COCO model, you can use classes=0, Default its None
# Heatmaps settings
colormap: # Colormap for heatmap, Only OPENCV supported colormaps can be used. By default COLORMAP_PARULA will be used for visualization.
# Workouts monitoring settings
up_angle: 145.0 # Workouts up_angle for counts, 145.0 is default value. You can adjust it for different workouts, based on position of keypoints. up_angle: 145.0 # Workouts up_angle for counts, 145.0 is default value. You can adjust it for different workouts, based on position of keypoints.
down_angle: 90 # Workouts down_angle for counts, 90 is default value. You can change it for different workouts, based on position of keypoints. down_angle: 90 # Workouts down_angle for counts, 90 is default value. You can change it for different workouts, based on position of keypoints.
kpts: [6, 8, 10] # Keypoints for workouts monitoring, i.e. If you want to consider keypoints for pushups that have mostly values of [6, 8, 10]. kpts: [6, 8, 10] # Keypoints for workouts monitoring, i.e. If you want to consider keypoints for pushups that have mostly values of [6, 8, 10].
colormap: # Colormap for heatmap, Only OPENCV supported colormaps can be used. By default COLORMAP_PARULA will be used for visualization.
# Analytics settings
analytics_type: "line" # Analytics type i.e "line", "pie", "bar" or "area" charts. By default, "line" analytics will be used for processing. analytics_type: "line" # Analytics type i.e "line", "pie", "bar" or "area" charts. By default, "line" analytics will be used for processing.
json_file: # parking system regions file path. json_file: # parking system regions file path.

@ -632,9 +632,10 @@ def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt"):
txt_file = save_dir / lb_name txt_file = save_dir / lb_name
cls = label["cls"] cls = label["cls"]
for i, s in enumerate(label["segments"]): for i, s in enumerate(label["segments"]):
if len(s) == 0:
continue
line = (int(cls[i]), *s.reshape(-1)) line = (int(cls[i]), *s.reshape(-1))
texts.append(("%g " * len(line)).rstrip() % line) texts.append(("%g " * len(line)).rstrip() % line)
if texts:
with open(txt_file, "a") as f: with open(txt_file, "a") as f:
f.writelines(text + "\n" for text in texts) f.writelines(text + "\n" for text in texts)
LOGGER.info(f"Generated segment labels saved in {save_dir}") LOGGER.info(f"Generated segment labels saved in {save_dir}")

@ -457,6 +457,7 @@ class Exporter:
@try_export @try_export
def export_openvino(self, prefix=colorstr("OpenVINO:")): def export_openvino(self, prefix=colorstr("OpenVINO:")):
"""YOLO OpenVINO export.""" """YOLO OpenVINO export."""
# WARNING: numpy>=2.0.0 issue with OpenVINO on macOS https://github.com/ultralytics/ultralytics/pull/17221
check_requirements(f'openvino{"<=2024.0.0" if ARM64 else ">=2024.0.0"}') # fix OpenVINO issue on ARM64 check_requirements(f'openvino{"<=2024.0.0" if ARM64 else ">=2024.0.0"}') # fix OpenVINO issue on ARM64
import openvino as ov import openvino as ov

@ -263,6 +263,7 @@ def _build_sam2(
memory_attention = MemoryAttention(d_model=256, pos_enc_at_input=True, num_layers=4, layer=MemoryAttentionLayer()) memory_attention = MemoryAttention(d_model=256, pos_enc_at_input=True, num_layers=4, layer=MemoryAttentionLayer())
memory_encoder = MemoryEncoder(out_dim=64) memory_encoder = MemoryEncoder(out_dim=64)
is_sam2_1 = checkpoint is not None and "sam2.1" in checkpoint
sam2 = SAM2Model( sam2 = SAM2Model(
image_encoder=image_encoder, image_encoder=image_encoder,
memory_attention=memory_attention, memory_attention=memory_attention,
@ -288,6 +289,9 @@ def _build_sam2(
multimask_max_pt_num=1, multimask_max_pt_num=1,
use_mlp_for_obj_ptr_proj=True, use_mlp_for_obj_ptr_proj=True,
compile_image_encoder=False, compile_image_encoder=False,
no_obj_embed_spatial=is_sam2_1,
proj_tpos_enc_in_obj_ptrs=is_sam2_1,
use_signed_tpos_enc_to_obj_ptrs=is_sam2_1,
sam_mask_decoder_extra_args=dict( sam_mask_decoder_extra_args=dict(
dynamic_multimask_via_stability=True, dynamic_multimask_via_stability=True,
dynamic_multimask_stability_delta=0.05, dynamic_multimask_stability_delta=0.05,
@ -313,6 +317,10 @@ sam_model_map = {
"sam2_s.pt": build_sam2_s, "sam2_s.pt": build_sam2_s,
"sam2_b.pt": build_sam2_b, "sam2_b.pt": build_sam2_b,
"sam2_l.pt": build_sam2_l, "sam2_l.pt": build_sam2_l,
"sam2.1_t.pt": build_sam2_t,
"sam2.1_s.pt": build_sam2_s,
"sam2.1_b.pt": build_sam2_b,
"sam2.1_l.pt": build_sam2_l,
} }

@ -161,18 +161,19 @@ class SAM2Model(torch.nn.Module):
use_multimask_token_for_obj_ptr: bool = False, use_multimask_token_for_obj_ptr: bool = False,
iou_prediction_use_sigmoid=False, iou_prediction_use_sigmoid=False,
memory_temporal_stride_for_eval=1, memory_temporal_stride_for_eval=1,
add_all_frames_to_correct_as_cond=False,
non_overlap_masks_for_mem_enc=False, non_overlap_masks_for_mem_enc=False,
use_obj_ptrs_in_encoder=False, use_obj_ptrs_in_encoder=False,
max_obj_ptrs_in_encoder=16, max_obj_ptrs_in_encoder=16,
add_tpos_enc_to_obj_ptrs=True, add_tpos_enc_to_obj_ptrs=True,
proj_tpos_enc_in_obj_ptrs=False, proj_tpos_enc_in_obj_ptrs=False,
use_signed_tpos_enc_to_obj_ptrs=False,
only_obj_ptrs_in_the_past_for_eval=False, only_obj_ptrs_in_the_past_for_eval=False,
pred_obj_scores: bool = False, pred_obj_scores: bool = False,
pred_obj_scores_mlp: bool = False, pred_obj_scores_mlp: bool = False,
fixed_no_obj_ptr: bool = False, fixed_no_obj_ptr: bool = False,
soft_no_obj_ptr: bool = False, soft_no_obj_ptr: bool = False,
use_mlp_for_obj_ptr_proj: bool = False, use_mlp_for_obj_ptr_proj: bool = False,
no_obj_embed_spatial: bool = False,
sam_mask_decoder_extra_args=None, sam_mask_decoder_extra_args=None,
compile_image_encoder: bool = False, compile_image_encoder: bool = False,
): ):
@ -205,8 +206,6 @@ class SAM2Model(torch.nn.Module):
use_multimask_token_for_obj_ptr (bool): Whether to use multimask tokens for object pointers. use_multimask_token_for_obj_ptr (bool): Whether to use multimask tokens for object pointers.
iou_prediction_use_sigmoid (bool): Whether to use sigmoid to restrict IoU prediction to [0-1]. iou_prediction_use_sigmoid (bool): Whether to use sigmoid to restrict IoU prediction to [0-1].
memory_temporal_stride_for_eval (int): Memory bank's temporal stride during evaluation. memory_temporal_stride_for_eval (int): Memory bank's temporal stride during evaluation.
add_all_frames_to_correct_as_cond (bool): Whether to append frames with correction clicks to conditioning
frame list.
non_overlap_masks_for_mem_enc (bool): Whether to apply non-overlapping constraints on object masks in non_overlap_masks_for_mem_enc (bool): Whether to apply non-overlapping constraints on object masks in
memory encoder during evaluation. memory encoder during evaluation.
use_obj_ptrs_in_encoder (bool): Whether to cross-attend to object pointers from other frames in the encoder. use_obj_ptrs_in_encoder (bool): Whether to cross-attend to object pointers from other frames in the encoder.
@ -216,6 +215,9 @@ class SAM2Model(torch.nn.Module):
the encoder. the encoder.
proj_tpos_enc_in_obj_ptrs (bool): Whether to add an extra linear projection layer for temporal positional proj_tpos_enc_in_obj_ptrs (bool): Whether to add an extra linear projection layer for temporal positional
encoding in object pointers. encoding in object pointers.
use_signed_tpos_enc_to_obj_ptrs (bool): whether to use signed distance (instead of unsigned absolute distance)
in the temporal positional encoding in the object pointers, only relevant when both `use_obj_ptrs_in_encoder=True`
and `add_tpos_enc_to_obj_ptrs=True`.
only_obj_ptrs_in_the_past_for_eval (bool): Whether to only attend to object pointers in the past only_obj_ptrs_in_the_past_for_eval (bool): Whether to only attend to object pointers in the past
during evaluation. during evaluation.
pred_obj_scores (bool): Whether to predict if there is an object in the frame. pred_obj_scores (bool): Whether to predict if there is an object in the frame.
@ -223,6 +225,7 @@ class SAM2Model(torch.nn.Module):
fixed_no_obj_ptr (bool): Whether to have a fixed no-object pointer when there is no object present. fixed_no_obj_ptr (bool): Whether to have a fixed no-object pointer when there is no object present.
soft_no_obj_ptr (bool): Whether to mix in no-object pointer softly for easier recovery and error mitigation. soft_no_obj_ptr (bool): Whether to mix in no-object pointer softly for easier recovery and error mitigation.
use_mlp_for_obj_ptr_proj (bool): Whether to use MLP for object pointer projection. use_mlp_for_obj_ptr_proj (bool): Whether to use MLP for object pointer projection.
no_obj_embed_spatial (bool): Whether add no obj embedding to spatial frames.
sam_mask_decoder_extra_args (Dict | None): Extra arguments for constructing the SAM mask decoder. sam_mask_decoder_extra_args (Dict | None): Extra arguments for constructing the SAM mask decoder.
compile_image_encoder (bool): Whether to compile the image encoder for faster inference. compile_image_encoder (bool): Whether to compile the image encoder for faster inference.
@ -253,6 +256,7 @@ class SAM2Model(torch.nn.Module):
if proj_tpos_enc_in_obj_ptrs: if proj_tpos_enc_in_obj_ptrs:
assert add_tpos_enc_to_obj_ptrs # these options need to be used together assert add_tpos_enc_to_obj_ptrs # these options need to be used together
self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs
self.use_signed_tpos_enc_to_obj_ptrs = use_signed_tpos_enc_to_obj_ptrs
self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval
# Part 2: memory attention to condition current frame's visual features # Part 2: memory attention to condition current frame's visual features
@ -309,9 +313,12 @@ class SAM2Model(torch.nn.Module):
self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim)) self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
trunc_normal_(self.no_obj_ptr, std=0.02) trunc_normal_(self.no_obj_ptr, std=0.02)
self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj
self.no_obj_embed_spatial = None
if no_obj_embed_spatial:
self.no_obj_embed_spatial = torch.nn.Parameter(torch.zeros(1, self.mem_dim))
trunc_normal_(self.no_obj_embed_spatial, std=0.02)
self._build_sam_heads() self._build_sam_heads()
self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
self.max_cond_frames_in_attn = max_cond_frames_in_attn self.max_cond_frames_in_attn = max_cond_frames_in_attn
# Model compilation # Model compilation
@ -533,8 +540,6 @@ class SAM2Model(torch.nn.Module):
if self.pred_obj_scores: if self.pred_obj_scores:
# Allow *soft* no obj ptr, unlike for masks # Allow *soft* no obj ptr, unlike for masks
if self.soft_no_obj_ptr: if self.soft_no_obj_ptr:
# Only hard possible with gt
assert not self.teacher_force_obj_scores_for_mem
lambda_is_obj_appearing = object_score_logits.sigmoid() lambda_is_obj_appearing = object_score_logits.sigmoid()
else: else:
lambda_is_obj_appearing = is_obj_appearing.float() lambda_is_obj_appearing = is_obj_appearing.float()
@ -647,6 +652,7 @@ class SAM2Model(torch.nn.Module):
if self.num_maskmem == 0: # Disable memory and skip fusion if self.num_maskmem == 0: # Disable memory and skip fusion
return current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) return current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
num_obj_ptr_tokens = 0 num_obj_ptr_tokens = 0
tpos_sign_mul = -1 if track_in_reverse else 1
# Step 1: condition the visual features of the current frame on previous memories # Step 1: condition the visual features of the current frame on previous memories
if not is_init_cond_frame: if not is_init_cond_frame:
# Retrieve the memories encoded with the maskmem backbone # Retrieve the memories encoded with the maskmem backbone
@ -664,7 +670,7 @@ class SAM2Model(torch.nn.Module):
# the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1 # the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
# We also allow taking the memory frame non-consecutively (with r>1), in which case # We also allow taking the memory frame non-consecutively (with r>1), in which case
# we take (self.num_maskmem - 2) frames among every r-th frames plus the last frame. # we take (self.num_maskmem - 2) frames among every r-th frames plus the last frame.
r = self.memory_temporal_stride_for_eval r = 1 if self.training else self.memory_temporal_stride_for_eval
for t_pos in range(1, self.num_maskmem): for t_pos in range(1, self.num_maskmem):
t_rel = self.num_maskmem - t_pos # how many frames before current frame t_rel = self.num_maskmem - t_pos # how many frames before current frame
if t_rel == 1: if t_rel == 1:
@ -718,7 +724,14 @@ class SAM2Model(torch.nn.Module):
ptr_cond_outputs = selected_cond_outputs ptr_cond_outputs = selected_cond_outputs
pos_and_ptrs = [ pos_and_ptrs = [
# Temporal pos encoding contains how far away each pointer is from current frame # Temporal pos encoding contains how far away each pointer is from current frame
(abs(frame_idx - t), out["obj_ptr"]) (
(
(frame_idx - t) * tpos_sign_mul
if self.use_signed_tpos_enc_to_obj_ptrs
else abs(frame_idx - t)
),
out["obj_ptr"],
)
for t, out in ptr_cond_outputs.items() for t, out in ptr_cond_outputs.items()
] ]
# Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame # Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
@ -787,6 +800,7 @@ class SAM2Model(torch.nn.Module):
current_vision_feats, current_vision_feats,
feat_sizes, feat_sizes,
pred_masks_high_res, pred_masks_high_res,
object_score_logits,
is_mask_from_pts, is_mask_from_pts,
): ):
"""Encodes frame features and masks into a new memory representation for video segmentation.""" """Encodes frame features and masks into a new memory representation for video segmentation."""
@ -819,10 +833,17 @@ class SAM2Model(torch.nn.Module):
) )
maskmem_features = maskmem_out["vision_features"] maskmem_features = maskmem_out["vision_features"]
maskmem_pos_enc = maskmem_out["vision_pos_enc"] maskmem_pos_enc = maskmem_out["vision_pos_enc"]
# add a no-object embedding to the spatial memory to indicate that the frame
# is predicted to be occluded (i.e. no object is appearing in the frame)
if self.no_obj_embed_spatial is not None:
is_obj_appearing = (object_score_logits > 0).float()
maskmem_features += (1 - is_obj_appearing[..., None, None]) * self.no_obj_embed_spatial[
..., None, None
].expand(*maskmem_features.shape)
return maskmem_features, maskmem_pos_enc return maskmem_features, maskmem_pos_enc
def track_step( def _track_step(
self, self,
frame_idx, frame_idx,
is_init_cond_frame, is_init_cond_frame,
@ -833,15 +854,7 @@ class SAM2Model(torch.nn.Module):
mask_inputs, mask_inputs,
output_dict, output_dict,
num_frames, num_frames,
track_in_reverse=False, # tracking in reverse time order (for demo usage) prev_sam_mask_logits,
# Whether to run the memory encoder on the predicted masks. Sometimes we might want
# to skip the memory encoder with `run_mem_encoder=False`. For example,
# in demo we might call `track_step` multiple times for each user click,
# and only encode the memory when the user finalizes their clicks. And in ablation
# settings like SAM training on static images, we don't need the memory encoder.
run_mem_encoder=True,
# The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
prev_sam_mask_logits=None,
): ):
"""Performs a single tracking step, updating object masks and memory features based on current frame inputs.""" """Performs a single tracking step, updating object masks and memory features based on current frame inputs."""
current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs} current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
@ -861,7 +874,7 @@ class SAM2Model(torch.nn.Module):
sam_outputs = self._use_mask_as_output(pix_feat, high_res_features, mask_inputs) sam_outputs = self._use_mask_as_output(pix_feat, high_res_features, mask_inputs)
else: else:
# fused the visual feature with previous memory features in the memory bank # fused the visual feature with previous memory features in the memory bank
pix_feat_with_mem = self._prepare_memory_conditioned_features( pix_feat = self._prepare_memory_conditioned_features(
frame_idx=frame_idx, frame_idx=frame_idx,
is_init_cond_frame=is_init_cond_frame, is_init_cond_frame=is_init_cond_frame,
current_vision_feats=current_vision_feats[-1:], current_vision_feats=current_vision_feats[-1:],
@ -880,12 +893,78 @@ class SAM2Model(torch.nn.Module):
mask_inputs = prev_sam_mask_logits mask_inputs = prev_sam_mask_logits
multimask_output = self._use_multimask(is_init_cond_frame, point_inputs) multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
sam_outputs = self._forward_sam_heads( sam_outputs = self._forward_sam_heads(
backbone_features=pix_feat_with_mem, backbone_features=pix_feat,
point_inputs=point_inputs, point_inputs=point_inputs,
mask_inputs=mask_inputs, mask_inputs=mask_inputs,
high_res_features=high_res_features, high_res_features=high_res_features,
multimask_output=multimask_output, multimask_output=multimask_output,
) )
return current_out, sam_outputs, high_res_features, pix_feat
def _encode_memory_in_output(
self,
current_vision_feats,
feat_sizes,
point_inputs,
run_mem_encoder,
high_res_masks,
object_score_logits,
current_out,
):
"""Finally run the memory encoder on the predicted mask to encode, it into a new memory feature (that can be
used in future frames).
"""
if run_mem_encoder and self.num_maskmem > 0:
high_res_masks_for_mem_enc = high_res_masks
maskmem_features, maskmem_pos_enc = self._encode_new_memory(
current_vision_feats=current_vision_feats,
feat_sizes=feat_sizes,
pred_masks_high_res=high_res_masks_for_mem_enc,
object_score_logits=object_score_logits,
is_mask_from_pts=(point_inputs is not None),
)
current_out["maskmem_features"] = maskmem_features
current_out["maskmem_pos_enc"] = maskmem_pos_enc
else:
current_out["maskmem_features"] = None
current_out["maskmem_pos_enc"] = None
def track_step(
self,
frame_idx,
is_init_cond_frame,
current_vision_feats,
current_vision_pos_embeds,
feat_sizes,
point_inputs,
mask_inputs,
output_dict,
num_frames,
track_in_reverse=False, # tracking in reverse time order (for demo usage)
# Whether to run the memory encoder on the predicted masks. Sometimes we might want
# to skip the memory encoder with `run_mem_encoder=False`. For example,
# in demo we might call `track_step` multiple times for each user click,
# and only encode the memory when the user finalizes their clicks. And in ablation
# settings like SAM training on static images, we don't need the memory encoder.
run_mem_encoder=True,
# The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
prev_sam_mask_logits=None,
):
"""Performs a single tracking step, updating object masks and memory features based on current frame inputs."""
current_out, sam_outputs, _, _ = self._track_step(
frame_idx,
is_init_cond_frame,
current_vision_feats,
current_vision_pos_embeds,
feat_sizes,
point_inputs,
mask_inputs,
output_dict,
num_frames,
track_in_reverse,
prev_sam_mask_logits,
)
( (
_, _,
_, _,
@ -893,28 +972,28 @@ class SAM2Model(torch.nn.Module):
low_res_masks, low_res_masks,
high_res_masks, high_res_masks,
obj_ptr, obj_ptr,
_, object_score_logits,
) = sam_outputs ) = sam_outputs
current_out["pred_masks"] = low_res_masks current_out["pred_masks"] = low_res_masks
current_out["pred_masks_high_res"] = high_res_masks current_out["pred_masks_high_res"] = high_res_masks
current_out["obj_ptr"] = obj_ptr current_out["obj_ptr"] = obj_ptr
if not self.training:
# Only add this in inference (to avoid unused param in activation checkpointing;
# it's mainly used in the demo to encode spatial memories w/ consolidated masks)
current_out["object_score_logits"] = object_score_logits
# Finally run the memory encoder on the predicted mask to encode # Finally run the memory encoder on the predicted mask to encode
# it into a new memory feature (that can be used in future frames) # it into a new memory feature (that can be used in future frames)
if run_mem_encoder and self.num_maskmem > 0: self._encode_memory_in_output(
high_res_masks_for_mem_enc = high_res_masks current_vision_feats,
maskmem_features, maskmem_pos_enc = self._encode_new_memory( feat_sizes,
current_vision_feats=current_vision_feats, point_inputs,
feat_sizes=feat_sizes, run_mem_encoder,
pred_masks_high_res=high_res_masks_for_mem_enc, high_res_masks,
is_mask_from_pts=(point_inputs is not None), object_score_logits,
current_out,
) )
current_out["maskmem_features"] = maskmem_features
current_out["maskmem_pos_enc"] = maskmem_pos_enc
else:
current_out["maskmem_features"] = None
current_out["maskmem_pos_enc"] = None
return current_out return current_out

@ -168,7 +168,6 @@ class ParkingManagement(BaseSolution):
Examples: Examples:
>>> from ultralytics.solutions import ParkingManagement >>> from ultralytics.solutions import ParkingManagement
>>> parking_manager = ParkingManagement(model="yolov8n.pt", json_file="parking_regions.json") >>> parking_manager = ParkingManagement(model="yolov8n.pt", json_file="parking_regions.json")
>>> results = parking_manager(source="parking_lot_video.mp4")
>>> print(f"Occupied spaces: {parking_manager.pr_info['Occupancy']}") >>> print(f"Occupied spaces: {parking_manager.pr_info['Occupancy']}")
>>> print(f"Available spaces: {parking_manager.pr_info['Available']}") >>> print(f"Available spaces: {parking_manager.pr_info['Available']}")
""" """

@ -1,16 +1,13 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics YOLO 🚀, AGPL-3.0 license
from collections import defaultdict from collections import defaultdict
from pathlib import Path
import cv2 import cv2
from ultralytics import YOLO from ultralytics import YOLO
from ultralytics.utils import LOGGER, yaml_load from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_SOL_DICT, LOGGER
from ultralytics.utils.checks import check_imshow, check_requirements from ultralytics.utils.checks import check_imshow, check_requirements
DEFAULT_SOL_CFG_PATH = Path(__file__).resolve().parents[1] / "cfg/solutions/default.yaml"
class BaseSolution: class BaseSolution:
""" """
@ -55,15 +52,18 @@ class BaseSolution:
self.Point = Point self.Point = Point
# Load config and update with args # Load config and update with args
self.CFG = yaml_load(DEFAULT_SOL_CFG_PATH) DEFAULT_SOL_DICT.update(kwargs)
self.CFG.update(kwargs) DEFAULT_CFG_DICT.update(kwargs)
LOGGER.info(f"Ultralytics Solutions: ✅ {self.CFG}") self.CFG = {**DEFAULT_SOL_DICT, **DEFAULT_CFG_DICT}
LOGGER.info(f"Ultralytics Solutions: ✅ {DEFAULT_SOL_DICT}")
self.region = self.CFG["region"] # Store region data for other classes usage self.region = self.CFG["region"] # Store region data for other classes usage
self.line_width = self.CFG["line_width"] # Store line_width for usage self.line_width = (
self.CFG["line_width"] if self.CFG["line_width"] is not None else 2
) # Store line_width for usage
# Load Model and store classes names # Load Model and store classes names
self.model = YOLO(self.CFG["model"]) self.model = YOLO(self.CFG["model"] if self.CFG["model"] else "yolov8n.pt")
self.names = self.model.names self.names = self.model.names
# Initialize environment and region setup # Initialize environment and region setup

@ -38,6 +38,7 @@ FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLO ROOT = FILE.parents[1] # YOLO
ASSETS = ROOT / "assets" # default images ASSETS = ROOT / "assets" # default images
DEFAULT_CFG_PATH = ROOT / "cfg/default.yaml" DEFAULT_CFG_PATH = ROOT / "cfg/default.yaml"
DEFAULT_SOL_CFG_PATH = ROOT / "cfg/solutions/default.yaml" # Ultralytics solutions yaml path
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLO multiprocessing threads NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLO multiprocessing threads
AUTOINSTALL = str(os.getenv("YOLO_AUTOINSTALL", True)).lower() == "true" # global auto-install mode AUTOINSTALL = str(os.getenv("YOLO_AUTOINSTALL", True)).lower() == "true" # global auto-install mode
VERBOSE = str(os.getenv("YOLO_VERBOSE", True)).lower() == "true" # global verbose mode VERBOSE = str(os.getenv("YOLO_VERBOSE", True)).lower() == "true" # global verbose mode
@ -508,6 +509,7 @@ def yaml_print(yaml_file: Union[str, Path, dict]) -> None:
# Default configuration # Default configuration
DEFAULT_CFG_DICT = yaml_load(DEFAULT_CFG_PATH) DEFAULT_CFG_DICT = yaml_load(DEFAULT_CFG_PATH)
DEFAULT_SOL_DICT = yaml_load(DEFAULT_SOL_CFG_PATH) # Ultralytics solutions configuration
for k, v in DEFAULT_CFG_DICT.items(): for k, v in DEFAULT_CFG_DICT.items():
if isinstance(v, str) and v.lower() == "none": if isinstance(v, str) and v.lower() == "none":
DEFAULT_CFG_DICT[k] = None DEFAULT_CFG_DICT[k] = None
@ -566,12 +568,16 @@ def is_kaggle():
def is_jupyter(): def is_jupyter():
""" """
Check if the current script is running inside a Jupyter Notebook. Verified on Colab, Jupyterlab, Kaggle, Paperspace. Check if the current script is running inside a Jupyter Notebook.
Returns: Returns:
(bool): True if running inside a Jupyter Notebook, False otherwise. (bool): True if running inside a Jupyter Notebook, False otherwise.
Note:
- Only works on Colab and Kaggle, other environments like Jupyterlab and Paperspace are not reliably detectable.
- "get_ipython" in globals() method suffers false positives when IPython package installed manually.
""" """
return "get_ipython" in globals() return IS_COLAB or IS_KAGGLE
def is_docker() -> bool: def is_docker() -> bool:
@ -799,10 +805,10 @@ def get_user_config_dir(sub_dir="Ultralytics"):
PROC_DEVICE_MODEL = read_device_model() # is_jetson() and is_raspberrypi() depend on this constant PROC_DEVICE_MODEL = read_device_model() # is_jetson() and is_raspberrypi() depend on this constant
ONLINE = is_online() ONLINE = is_online()
IS_COLAB = is_colab() IS_COLAB = is_colab()
IS_KAGGLE = is_kaggle()
IS_DOCKER = is_docker() IS_DOCKER = is_docker()
IS_JETSON = is_jetson() IS_JETSON = is_jetson()
IS_JUPYTER = is_jupyter() IS_JUPYTER = is_jupyter()
IS_KAGGLE = is_kaggle()
IS_PIP_PACKAGE = is_pip_package() IS_PIP_PACKAGE = is_pip_package()
IS_RASPBERRYPI = is_raspberrypi() IS_RASPBERRYPI = is_raspberrypi()
GIT_DIR = get_git_dir() GIT_DIR = get_git_dir()
@ -1193,7 +1199,7 @@ class SettingsManager(JSONDict):
"neptune": True, # Neptune integration "neptune": True, # Neptune integration
"raytune": True, # Ray Tune integration "raytune": True, # Ray Tune integration
"tensorboard": True, # TensorBoard logging "tensorboard": True, # TensorBoard logging
"wandb": True, # Weights & Biases logging "wandb": False, # Weights & Biases logging
"vscode_msg": True, # VSCode messaging "vscode_msg": True, # VSCode messaging
} }

@ -335,7 +335,7 @@ def check_font(font="Arial.ttf"):
return file return file
def check_python(minimum: str = "3.8.0", hard: bool = True, verbose: bool = True) -> bool: def check_python(minimum: str = "3.8.0", hard: bool = True, verbose: bool = False) -> bool:
""" """
Check current python version against the required minimum version. Check current python version against the required minimum version.

Loading…
Cancel
Save