Update YOLOv5 YAMLs to 'u' YAMLs (#800)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
pull/874/head
Glenn Jocher 2 years ago committed by GitHub
parent 0d182e80f1
commit 21ae321bc2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 6
      CONTRIBUTING.md
  2. 6
      README.md
  3. 6
      README.zh-CN.md
  4. 2
      docker/Dockerfile
  5. 2
      docs/cfg.md
  6. 8
      docs/engine.md
  7. 2
      docs/hub.md
  8. 2
      docs/reference/base_trainer.md
  9. 2
      ultralytics/__init__.py
  10. 4
      ultralytics/hub/utils.py
  11. 3
      ultralytics/nn/modules.py
  12. 18
      ultralytics/yolo/engine/exporter.py
  13. 4
      ultralytics/yolo/engine/model.py
  14. 7
      ultralytics/yolo/engine/predictor.py
  15. 28
      ultralytics/yolo/utils/checks.py
  16. 12
      ultralytics/yolo/utils/downloads.py
  17. 2
      ultralytics/yolo/v8/classify/predict.py

@ -59,18 +59,18 @@ To allow your work to be integrated as seamlessly as possible, we advise you to:
### Docstrings
Not all functions or classes require docstrings but when they do, we follow [google-stlye docstrings format](https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings). Here is an example:
Not all functions or classes require docstrings but when they do, we follow [google-style docstrings format](https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings). Here is an example:
```python
"""
What the function does - performs nms on given detection predictions
What the function does. Performs NMS on given detection predictions.
Args:
arg1: The description of the 1st argument
arg2: The description of the 2nd argument
Returns:
What the function returns. Empty if nothing is returned
What the function returns. Empty if nothing is returned.
Raises:
Exception Class: When and why this exception can be raised by the function.

@ -1,6 +1,6 @@
<div align="center">
<p>
<a align="center" href="https://ultralytics.com/yolov8" target="_blank">
<a href="https://ultralytics.com/yolov8" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
</p>
@ -191,7 +191,7 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classification/) fo
## <div align="center">Integrations</div>
<br>
<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
<a href="https://bit.ly/ultralytics_hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png"></a>
<br>
<br>
@ -220,7 +220,7 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classification/) fo
🚀 models, and deploy to the real world in a seamless experience. Get started for **Free** now! Also run YOLOv8 models on
your iOS or Android device by downloading the [Ultralytics App](https://ultralytics.com/app_install)!
<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
<a href="https://bit.ly/ultralytics_hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
## <div align="center">Contribute</div>

@ -1,6 +1,6 @@
<div align="center">
<p>
<a align="center" href="https://ultralytics.com/yolov8" target="_blank">
<a href="https://ultralytics.com/yolov8" target="_blank">
<img width="850" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
</p>
@ -167,7 +167,7 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
## <div align="center">模块集成</div>
<br>
<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
<a href="https://bit.ly/ultralytics_hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png"></a>
<br>
<br>
@ -194,7 +194,7 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
[Ultralytics HUB](https://bit.ly/ultralytics_hub) 是我们⭐ **新**的无代码解决方案,用于可视化数据集,训练 YOLOv8🚀 模型,并以无缝体验方式部署到现实世界。现在开始**免费**! 还可以通过下载 [Ultralytics App](https://ultralytics.com/app_install) 在你的 iOS 或 Android 设备上运行 YOLOv8 模型!
<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
<a href="https://bit.ly/ultralytics_hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
## <div align="center">贡献</div>

@ -13,7 +13,7 @@ ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Aria
ENV DEBIAN_FRONTEND noninteractive
RUN apt update
RUN TZ=Etc/UTC apt install -y tzdata
RUN apt install --no-install-recommends -y git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev gnupg
RUN apt install --no-install-recommends -y gcc git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev gnupg
# RUN alias python=python3
# Create working directory

@ -125,7 +125,7 @@ given task.
| show | False | show results if possible |
| save_txt | False | save results as .txt file |
| save_conf | False | save results with confidence scores |
| save_crop | Fasle | save cropped images with results |
| save_crop | False | save cropped images with results |
| hide_labels | False | hide labels |
| hide_conf | False | hide confidence scores |
| vid_stride | False | video frame-rate stride |

@ -3,12 +3,12 @@ executors. Let's take a look at the Trainer engine.
## BaseTrainer
BaseTrainer contains the generic boilerplate training routine. It can be customized for any task based over overidding
BaseTrainer contains the generic boilerplate training routine. It can be customized for any task based over overriding
the required functions or operations as long the as correct formats are followed. For example, you can support your own
custom model and dataloder by just overriding these functions:
custom model and dataloader by just overriding these functions:
* `get_model(cfg, weights)` - The function that builds the model to be trained
* `get_dataloder()` - The function that builds the dataloder
* `get_dataloder()` - The function that builds the dataloader
More details and source code can be found in [`BaseTrainer` Reference](reference/base_trainer.md)
## DetectionTrainer
@ -78,6 +78,6 @@ To know more about Callback triggering events and entry point, checkout our Call
## Other engine components
There are other componenets that can be customized similarly like `Validators` and `Predictors`
There are other components that can be customized similarly like `Validators` and `Predictors`
See Reference section for more information on these.

@ -80,7 +80,7 @@ training! <a href="https://colab.research.google.com/github/ultralytics/hub/blob
Export your model to 13 different formats, including TensorFlow, ONNX, OpenVINO, CoreML, Paddle and many others. Run
models directly on your mobile device by downloading the [Ultralytics App](https://ultralytics.com/app_install)!
<a align="center" href="https://ultralytics.com/app_install" target="_blank">
<a href="https://ultralytics.com/app_install" target="_blank">
<img width="100%" alt="Ultralytics mobile app" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-app.png"></a>
## ❓ Issues

@ -1,4 +1,4 @@
All task Trainers are inherited from `BaseTrainer` class that contains the model training and optimzation routine
All task Trainers are inherited from `BaseTrainer` class that contains the model training and optimization routine
boilerplate. You can override any function of these Trainers to suit your needs.
---

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
__version__ = "8.0.27"
__version__ = "8.0.28"
from ultralytics.yolo.engine.model import YOLO
from ultralytics.yolo.utils import ops

@ -175,7 +175,9 @@ class Traces:
cfg = vars(cfg) # convert type from IterableSimpleNamespace to dict
if not all_keys: # filter cfg
include_keys = {'task', 'mode'} # always include
cfg = {k: v for k, v in cfg.items() if v != DEFAULT_CFG_DICT.get(k, None) or k in include_keys}
cfg = {
k: (v.split(os.sep)[-1] if isinstance(v, str) and os.sep in v else v)
for k, v in cfg.items() if v != DEFAULT_CFG_DICT.get(k, None) or k in include_keys}
trace = {'uuid': SETTINGS['uuid'], 'cfg': cfg, 'metadata': self.metadata}
# Send a request to the HUB API to sync analytics

@ -456,4 +456,5 @@ class Classify(nn.Module):
def forward(self, x):
if isinstance(x, list):
x = torch.cat(x, 1)
return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
return x if self.training else x.softmax(1)

@ -70,7 +70,7 @@ from ultralytics.nn.modules import Detect, Segment
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, guess_model_task
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
from ultralytics.yolo.data.utils import check_det_dataset
from ultralytics.yolo.data.utils import check_det_dataset, IMAGENET_MEAN, IMAGENET_STD
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, callbacks, colorstr, get_default_args, yaml_save
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
from ultralytics.yolo.utils.files import file_size
@ -185,8 +185,8 @@ class Exporter:
if self.args.half and not coreml and not xml:
im, model = im.half(), model.half() # to FP16
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
LOGGER.info(
f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with input shape {tuple(im.shape)} and "
f"output shape {shape} ({file_size(file):.1f} MB)")
# Warnings
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
@ -384,12 +384,18 @@ class Exporter:
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
f = self.file.with_suffix('.mlmodel')
task = self.model.task
if self.model.task == 'classify':
bias = [-x for x in IMAGENET_MEAN]
scale = 1 / 255 / (sum(IMAGENET_STD) / 3)
classifier_config = ct.ClassifierConfig(list(self.model.names.values()))
else:
bias = [0.0, 0.0, 0.0]
scale = 1 / 255
classifier_config = None
model = iOSModel(self.model, self.im).eval() if self.args.nms else self.model
ts = torch.jit.trace(model, self.im, strict=False) # TorchScript model
classifier_config = ct.ClassifierConfig(list(model.names.values())) if task == 'classify' else None
ct_model = ct.convert(ts,
inputs=[ct.ImageType('image', shape=self.im.shape, scale=1 / 255, bias=[0, 0, 0])],
inputs=[ct.ImageType('image', shape=self.im.shape, scale=scale, bias=bias)],
classifier_config=classifier_config)
bits, mode = (8, 'kmeans_lut') if self.args.int8 else (16, 'linear') if self.args.half else (32, None)
if bits < 32:

@ -162,6 +162,8 @@ class YOLO:
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
args.data = data or args.data
args.task = self.task
if args.imgsz == DEFAULT_CFG.imgsz:
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
validator = self.ValidatorClass(args=args)
@ -180,6 +182,8 @@ class YOLO:
overrides.update(kwargs)
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
args.task = self.task
if args.imgsz == DEFAULT_CFG.imgsz:
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
exporter = Exporter(overrides=args)
exporter(model=self.model)

@ -120,9 +120,6 @@ class BasePredictor:
pass
def setup_source(self, source):
if not self.model:
raise Exception("Model not initialized!")
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
self.dataset = load_inference_source(source=source,
transforms=getattr(self.model.model, 'transforms', None),
@ -190,6 +187,10 @@ class BasePredictor:
if self.args.verbose:
LOGGER.info(f"{s}{'' if len(preds) else '(no detections), '}{self.dt[1].dt * 1E3:.1f}ms")
# Release assets
if isinstance(self.vid_writer[-1], cv2.VideoWriter):
self.vid_writer[-1].release() # release final video writer
# Print results
if self.args.verbose and self.seen:
t = tuple(x.t / self.seen * 1E3 for x in self.dt) # speeds per image

@ -5,6 +5,7 @@ import inspect
import math
import os
import platform
import re
import shutil
import urllib
from pathlib import Path
@ -67,12 +68,13 @@ def check_imgsz(imgsz, stride=32, min_dim=1, max_dim=2, floor=0):
f"Valid imgsz types are int i.e. 'imgsz=640' or list i.e. 'imgsz=[640,640]'")
# Apply max_dim
if max_dim == 1:
LOGGER.warning(f"WARNING ⚠ 'train' and 'val' imgsz types must be integer, updating to 'imgsz={max(imgsz)}'. "
f"'predict' and 'export' imgsz may be list or integer, "
f"i.e. 'yolo export imgsz=640,480' or 'yolo export imgsz=640'")
if len(imgsz) > max_dim:
msg = "'train' and 'val' imgsz must be an integer, while 'predict' and 'export' imgsz may be a [h, w] list " \
"or an integer, i.e. 'yolo export imgsz=640,480' or 'yolo export imgsz=640'"
if max_dim != 1:
raise ValueError(f"imgsz={imgsz} is not a valid image size. {msg}")
LOGGER.warning(f"WARNING ⚠ updating to 'imgsz={max(imgsz)}'. {msg}")
imgsz = [max(imgsz)]
# Make image size a multiple of the stride
sz = [max(math.ceil(x / stride) * stride, floor) for x in imgsz]
@ -220,10 +222,24 @@ def check_suffix(file='yolov8n.pt', suffix=('.pt',), msg=''):
assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"
def check_yolov5u_filename(file: str):
# Replace legacy YOLOv5 filenames with updated YOLOv5u filenames
if 'yolov3' in file or 'yolov5' in file and 'u' not in file:
original_file = file
file = re.sub(r"(.*yolov5([nsmlx]))\.", "\\1u.", file) # i.e. yolov5n.pt -> yolov5nu.pt
file = re.sub(r"(.*yolov3(|-tiny|-spp))\.", "\\1u.", file) # i.e. yolov3-spp.pt -> yolov3-sppu.pt
if file != original_file:
LOGGER.info(f"PRO TIP 💡 Replace 'model={original_file}' with new 'model={file}'.\nYOLOv5 'u' models are "
f"trained with https://github.com/ultralytics/ultralytics and feature improved performance vs "
f"standard YOLOv5 models trained with https://github.com/ultralytics/yolov5.\n")
return file
def check_file(file, suffix=''):
# Search/download file (if necessary) and return path
check_suffix(file, suffix) # optional
file = str(file) # convert to str()
file = str(file) # convert to string
file = check_yolov5u_filename(file) # yolov5n -> yolov5nu
if not file or ('://' not in file and Path(file).is_file()): # exists ('://' check required in Windows Python<3.10)
return file
elif file.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://')): # download

@ -1,7 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import contextlib
import re
import subprocess
from itertools import repeat
from multiprocessing.pool import ThreadPool
@ -111,6 +110,7 @@ def safe_download(url,
def attempt_download_asset(file, repo='ultralytics/assets', release='v0.0.0'):
# Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v6.2', etc.
from ultralytics.yolo.utils import SETTINGS
from ultralytics.yolo.utils.checks import check_yolov5u_filename
def github_assets(repository, version='latest'):
# Return GitHub repo tag and assets (i.e. ['yolov8n.pt', 'yolov8s.pt', ...])
@ -121,15 +121,7 @@ def attempt_download_asset(file, repo='ultralytics/assets', release='v0.0.0'):
# YOLOv3/5u updates
file = str(file)
if 'yolov3' in file or 'yolov5' in file and 'u' not in file:
original_file = file
file = re.sub(r"(.*yolov5([nsmlx]))\.pt", "\\1u.pt", file) # i.e. yolov5n.pt -> yolov5nu.pt
file = re.sub(r"(.*yolov3(|-tiny|-spp))\.pt", "\\1u.pt", file) # i.e. yolov3-spp.pt -> yolov3-sppu.pt
if file != original_file:
LOGGER.info(f"PRO TIP 💡 Replace 'model={original_file}' with new 'model={file}'.\nYOLOv5 'u' models are "
f"trained with https://github.com/ultralytics/ultralytics and feature improved performance vs "
f"standard YOLOv5 models trained with https://github.com/ultralytics/yolov5.\n")
file = check_yolov5u_filename(file)
file = Path(file.strip().replace("'", ''))
if file.exists():
return str(file)

@ -23,7 +23,7 @@ class ClassificationPredictor(BasePredictor):
results = []
for i, pred in enumerate(preds):
shape = orig_img[i].shape if isinstance(orig_img, list) else orig_img.shape
results.append(Results(probs=pred.softmax(0), orig_shape=shape[:2]))
results.append(Results(probs=pred, orig_shape=shape[:2]))
return results
def write_results(self, idx, results, batch):

Loading…
Cancel
Save