diff --git a/docs/en/modes/benchmark.md b/docs/en/modes/benchmark.md
index 3086e98ec..00d851bea 100644
--- a/docs/en/modes/benchmark.md
+++ b/docs/en/modes/benchmark.md
@@ -8,6 +8,26 @@ keywords: model benchmarking, YOLO11, Ultralytics, performance evaluation, expor
+## Benchmark Visualization
+
+
+
+!!! tip "Refresh Browser"
+
+ You may need to refresh the page to view the graphs correctly due to potential cookie issues.
+
+
+
+
+
+
+
+
+
+
+
+
+
## Introduction
Once your model is trained and validated, the next logical step is to evaluate its performance in various real-world scenarios. Benchmark mode in Ultralytics YOLO11 serves this purpose by providing a robust framework for assessing the speed and [accuracy](https://www.ultralytics.com/glossary/accuracy) of your model across a range of export formats.
diff --git a/docs/overrides/javascript/extra.js b/docs/overrides/javascript/extra.js
index 5029ff489..13f07397e 100644
--- a/docs/overrides/javascript/extra.js
+++ b/docs/overrides/javascript/extra.js
@@ -147,3 +147,91 @@ document.addEventListener("DOMContentLoaded", () => {
addInkeepWidget(); // initialize the widget
});
});
+
+// This object contains the benchmark data for various object detection models.
+const data = {
+ 'YOLOv5': {s: {speed: 1.92, mAP: 37.4}, m: {speed: 4.03, mAP: 45.4}, l: {speed: 6.61, mAP: 49.0}, x: {speed: 11.89, mAP: 50.7}},
+ 'YOLOv6': {n: {speed: 1.17, mAP: 37.5}, s: {speed: 2.66, mAP: 45.0}, m: {speed: 5.28, mAP: 50.0}, l: {speed: 8.95, mAP: 52.8}},
+ 'YOLOv7': {l: {speed: 6.84, mAP: 51.4}, x: {speed: 11.57, mAP: 53.1}},
+ 'YOLOv8': {n: {speed: 1.47, mAP: 37.3}, s: {speed: 2.66, mAP: 44.9}, m: {speed: 5.86, mAP: 50.2}, l: {speed: 9.06, mAP: 52.9}, x: {speed: 14.37, mAP: 53.9}},
+ 'YOLOv9': {t: {speed: 2.30, mAP: 37.8}, s: {speed: 3.54, mAP: 46.5}, m: {speed: 6.43, mAP: 51.5}, c: {speed: 7.16, mAP: 52.8}, e: {speed: 16.77, mAP: 55.1}},
+ 'YOLOv10': {n: {speed: 1.56, mAP: 39.5}, s: {speed: 2.66, mAP: 46.7}, m: {speed: 5.48, mAP: 51.3}, b: {speed: 6.54, mAP: 52.7}, l: {speed: 8.33, mAP: 53.3}, x: {speed: 12.2, mAP: 54.4}},
+ 'PPYOLOE': {t: {speed: 2.84, mAP: 39.9}, s: {speed: 2.62, mAP: 43.7}, m: {speed: 5.56, mAP: 49.8}, l: {speed: 8.36, mAP: 52.9}, x: {speed: 14.3, mAP: 54.7}},
+ 'YOLO11': {n: {speed: 1.55, mAP: 39.5}, s: {speed: 2.63, mAP: 47.0}, m: {speed: 5.27, mAP: 51.4}, l: {speed: 6.84, mAP: 53.2}, x: {speed: 12.49, mAP: 54.7}}
+};
+
+let chart = null; // chart variable will hold the reference to the current chart instance.
+
+// This function is responsible for updating the benchmarks chart.
+function updateChart() {
+ // If a chart instance already exists, destroy it.
+ if (chart) { chart.destroy(); }
+
+ // Get the selected algorithms from the checkboxes.
+ const selectedAlgorithms = [...document.querySelectorAll('input[name="algorithm"]:checked')].map(e => e.value);
+
+ // Create the datasets for the selected algorithms.
+ const datasets = selectedAlgorithms.map((algorithm, index) => ({
+ label: algorithm, // Label for the data points in the legend.
+ data: Object.entries(data[algorithm]).map(([version, point]) => ({
+ x: point.speed, // Speed data points on the x-axis.
+ y: point.mAP, // mAP data points on the y-axis.
+ version: version.toUpperCase() // Store the version as additional data.
+ })),
+ fill: false, // Don't fill the chart.
+ borderColor: `hsl(${index * 90}, 70%, 50%)`, // Assign a unique color to each dataset.
+ tension: 0.3, // Smooth the line.
+ pointRadius: 5, // Increase the dot size.
+ pointHoverRadius: 10, // Increase the dot size on hover.
+ borderWidth: 2 // Set the line thickness.
+ }));
+
+ // If there are no selected algorithms, return without creating a new chart.
+ if (datasets.length === 0) return;
+
+ // Create a new chart instance.
+ chart = new Chart(document.getElementById('chart').getContext('2d'), {
+ type: 'line', // Set the chart type to line.
+ data: { datasets },
+ options: {
+ plugins: {
+ legend: { display: true, position: 'top', labels: { color: '#111e68' } }, // Configure the legend.
+ tooltip: {
+ callbacks: {
+ label: (tooltipItem) => {
+ const { dataset, dataIndex } = tooltipItem;
+ const point = dataset.data[dataIndex];
+ return `${dataset.label}${point.version.toLowerCase()}: Speed = ${point.x}, mAP = ${point.y}`; // Custom tooltip label.
+ }
+ },
+ mode: 'nearest',
+ intersect: false
+ } // Configure the tooltip.
+ },
+ interaction: { mode: 'nearest', axis: 'x', intersect: false }, // Configure the interaction mode.
+ scales: {
+ x: {
+ type: 'linear', position: 'bottom',
+ title: { display: true, text: 'Latency T4 TensorRT10 FP16 (ms/img)', color: '#111e68' }, // X-axis title.
+ grid: { color: '#e0e0e0' }, // Grid line color.
+ ticks: { color: '#111e68' } // Tick label color.
+ },
+ y: {
+ title: { display: true, text: 'mAP', color: '#111e68' }, // Y-axis title.
+ grid: { color: '#e0e0e0' }, // Grid line color.
+ ticks: { color: '#111e68' } // Tick label color.
+ }
+ }
+ }
+ });
+}
+
+// Add event listeners to the checkboxes to trigger the chart update.
+document.addEventListener("DOMContentLoaded", () => {
+ document.querySelectorAll('input[name="algorithm"]').forEach(checkbox =>
+ checkbox.addEventListener('change', updateChart)
+ );
+ // Call updateChart on initial load
+ updateChart();
+ console.log("DOM loaded, initial chart render attempted");
+});