Add ResNet50 and ResNet101 backbone RTDETR models (#6661)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>pull/6750/head^2
parent
d12411ec0d
commit
1e1247ddee
7 changed files with 144 additions and 21 deletions
@ -0,0 +1,42 @@ |
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license |
||||
# RT-DETR-ResNet101 object detection model with P3-P5 outputs. |
||||
|
||||
# Parameters |
||||
nc: 80 # number of classes |
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n' |
||||
# [depth, width, max_channels] |
||||
l: [1.00, 1.00, 1024] |
||||
|
||||
backbone: |
||||
# [from, repeats, module, args] |
||||
- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0 |
||||
- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1 |
||||
- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2 |
||||
- [-1, 1, ResNetLayer, [512, 256, 2, False, 23]] # 3 |
||||
- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4 |
||||
|
||||
head: |
||||
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5 |
||||
- [-1, 1, AIFI, [1024, 8]] |
||||
- [-1, 1, Conv, [256, 1, 1]] # 7 |
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] |
||||
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9 |
||||
- [[-2, -1], 1, Concat, [1]] |
||||
- [-1, 3, RepC3, [256]] # 11 |
||||
- [-1, 1, Conv, [256, 1, 1]] # 12 |
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] |
||||
- [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 |
||||
- [[-2, -1], 1, Concat, [1]] # cat backbone P4 |
||||
- [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1 |
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0 |
||||
- [[-1, 12], 1, Concat, [1]] # cat Y4 |
||||
- [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0 |
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1 |
||||
- [[-1, 7], 1, Concat, [1]] # cat Y5 |
||||
- [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1 |
||||
|
||||
- [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5) |
@ -0,0 +1,42 @@ |
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license |
||||
# RT-DETR-ResNet50 object detection model with P3-P5 outputs. |
||||
|
||||
# Parameters |
||||
nc: 80 # number of classes |
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n' |
||||
# [depth, width, max_channels] |
||||
l: [1.00, 1.00, 1024] |
||||
|
||||
backbone: |
||||
# [from, repeats, module, args] |
||||
- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0 |
||||
- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1 |
||||
- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2 |
||||
- [-1, 1, ResNetLayer, [512, 256, 2, False, 6]] # 3 |
||||
- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4 |
||||
|
||||
head: |
||||
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5 |
||||
- [-1, 1, AIFI, [1024, 8]] |
||||
- [-1, 1, Conv, [256, 1, 1]] # 7 |
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] |
||||
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9 |
||||
- [[-2, -1], 1, Concat, [1]] |
||||
- [-1, 3, RepC3, [256]] # 11 |
||||
- [-1, 1, Conv, [256, 1, 1]] # 12 |
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] |
||||
- [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 |
||||
- [[-2, -1], 1, Concat, [1]] # cat backbone P4 |
||||
- [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1 |
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0 |
||||
- [[-1, 12], 1, Concat, [1]] # cat Y4 |
||||
- [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0 |
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1 |
||||
- [[-1, 7], 1, Concat, [1]] # cat Y5 |
||||
- [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1 |
||||
|
||||
- [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5) |
Loading…
Reference in new issue