diff --git a/docs/en/models/yolov10.md b/docs/en/models/yolov10.md index 1a190b3a28..5ae00dd5f5 100644 --- a/docs/en/models/yolov10.md +++ b/docs/en/models/yolov10.md @@ -122,31 +122,56 @@ Here is a detailed comparison of YOLOv10 variants with other state-of-the-art mo For predicting new images with YOLOv10: -```python -from ultralytics import YOLO +!!! Example -# Load a pre-trained YOLOv10n model -model = YOLO("yolov10n.pt") + === "Python" -# Perform object detection on an image -results = model("image.jpg") + ```python + from ultralytics import YOLO -# Display the results -results[0].show() -``` + # Load a pre-trained YOLOv10n model + model = YOLO("yolov10n.pt") + + # Perform object detection on an image + results = model("image.jpg") + + # Display the results + results[0].show() + ``` + + === "CLI" + + ```bash + # Load a COCO-pretrained YOLOv10n model and run inference on the 'bus.jpg' image + yolo detect predict model=yolov10n.pt source=path/to/bus.jpg + ``` For training YOLOv10 on a custom dataset: -```python -from ultralytics import YOLO +!!! Example -# Load YOLOv10n model from scratch -model = YOLO("yolov10n.yaml") + === "Python" -# Train the model -model.train(data="coco8.yaml", epochs=100, imgsz=640) -``` + ```python + from ultralytics import YOLO + # Load YOLOv10n model from scratch + model = YOLO("yolov10n.yaml") + + # Train the model + model.train(data="coco8.yaml", epochs=100, imgsz=640) + ``` + + === "CLI" + + ```bash + # Build a YOLOv10n model from scratch and train it on the COCO8 example dataset for 100 epochs + yolo train model=yolov10n.yaml data=coco8.yaml epochs=100 imgsz=640 + + # Build a YOLOv10n model from scratch and run inference on the 'bus.jpg' image + yolo predict model=yolov10n.yaml source=path/to/bus.jpg + ``` + ## Supported Tasks and Modes The YOLOv10 models series offers a range of models, each optimized for high-performance [Object Detection](../tasks/detect.md). These models cater to varying computational needs and accuracy requirements, making them versatile for a wide array of applications.