`ultralytics 8.3.53` New Export argument validation (#18185)

Signed-off-by: Mohammed Yasin <32206511+Y-T-G@users.noreply.github.com>
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
samurai^2 v8.3.53
Mohammed Yasin 2 months ago committed by GitHub
parent d43fc78a77
commit 1d13575ba1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 4
      docs/en/reference/engine/exporter.md
  2. 2
      ultralytics/__init__.py
  3. 62
      ultralytics/engine/exporter.py
  4. 2
      ultralytics/utils/benchmarks.py

@ -23,6 +23,10 @@ keywords: YOLOv8, export formats, ONNX, TensorRT, CoreML, machine learning model
<br><br><hr><br>
## ::: ultralytics.engine.exporter.validate_args
<br><br><hr><br>
## ::: ultralytics.engine.exporter.gd_outputs
<br><br><hr><br>

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = "8.3.52"
__version__ = "8.3.53"
import os

@ -101,23 +101,47 @@ from ultralytics.utils.torch_utils import TORCH_1_13, get_latest_opset, select_d
def export_formats():
"""Ultralytics YOLO export formats."""
x = [
["PyTorch", "-", ".pt", True, True],
["TorchScript", "torchscript", ".torchscript", True, True],
["ONNX", "onnx", ".onnx", True, True],
["OpenVINO", "openvino", "_openvino_model", True, False],
["TensorRT", "engine", ".engine", False, True],
["CoreML", "coreml", ".mlpackage", True, False],
["TensorFlow SavedModel", "saved_model", "_saved_model", True, True],
["TensorFlow GraphDef", "pb", ".pb", True, True],
["TensorFlow Lite", "tflite", ".tflite", True, False],
["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", True, False],
["TensorFlow.js", "tfjs", "_web_model", True, False],
["PaddlePaddle", "paddle", "_paddle_model", True, True],
["MNN", "mnn", ".mnn", True, True],
["NCNN", "ncnn", "_ncnn_model", True, True],
["IMX", "imx", "_imx_model", True, True],
["PyTorch", "-", ".pt", True, True, []],
["TorchScript", "torchscript", ".torchscript", True, True, ["optimize", "batch"]],
["ONNX", "onnx", ".onnx", True, True, ["half", "dynamic", "simplify", "opset", "batch"]],
["OpenVINO", "openvino", "_openvino_model", True, False, ["half", "int8", "batch"]],
["TensorRT", "engine", ".engine", False, True, ["half", "dynamic", "simplify", "int8", "batch"]],
["CoreML", "coreml", ".mlpackage", True, False, ["half", "int8", "nms", "batch"]],
["TensorFlow SavedModel", "saved_model", "_saved_model", True, True, ["keras", "int8", "batch"]],
["TensorFlow GraphDef", "pb", ".pb", True, True, ["batch"]],
["TensorFlow Lite", "tflite", ".tflite", True, False, ["half", "int8", "batch"]],
["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", True, False, []],
["TensorFlow.js", "tfjs", "_web_model", True, False, ["half", "int8", "batch"]],
["PaddlePaddle", "paddle", "_paddle_model", True, True, ["batch"]],
["MNN", "mnn", ".mnn", True, True, ["batch", "int8", "half"]],
["NCNN", "ncnn", "_ncnn_model", True, True, ["half", "batch"]],
["IMX", "imx", "_imx_model", True, True, ["int8"]],
]
return dict(zip(["Format", "Argument", "Suffix", "CPU", "GPU"], zip(*x)))
return dict(zip(["Format", "Argument", "Suffix", "CPU", "GPU", "Arguments"], zip(*x)))
def validate_args(format, passed_args, valid_args):
"""
Validates arguments based on format.
Args:
format (str): The export format.
passed_args (Namespace): The arguments used during export.
valid_args (dict): List of valid arguments for the format.
Raises:
AssertionError: If an argument that's not supported by the export format is used, or if format doesn't have the supported arguments listed.
"""
# Only check valid usage of these args
export_args = ["half", "int8", "dynamic", "keras", "nms", "batch"]
assert valid_args is not None, f"ERROR ❌ valid arguments for '{format}' not listed."
custom = {"batch": 1, "data": None, "device": None} # exporter defaults
default_args = get_cfg(DEFAULT_CFG, custom)
for arg in export_args:
not_default = getattr(passed_args, arg, None) != getattr(default_args, arg, None)
if not_default:
assert arg in valid_args, f"ERROR ❌ argument '{arg}' is not supported for format='{format}'"
def gd_outputs(gd):
@ -182,7 +206,8 @@ class Exporter:
fmt = "engine"
if fmt in {"mlmodel", "mlpackage", "mlprogram", "apple", "ios", "coreml"}: # 'coreml' aliases
fmt = "coreml"
fmts = tuple(export_formats()["Argument"][1:]) # available export formats
fmts_dict = export_formats()
fmts = tuple(fmts_dict["Argument"][1:]) # available export formats
if fmt not in fmts:
import difflib
@ -224,7 +249,8 @@ class Exporter:
assert dla in {"0", "1"}, f"Expected self.args.device='dla:0' or 'dla:1, but got {self.args.device}."
self.device = select_device("cpu" if self.args.device is None else self.args.device)
# Checks
# Argument compatibility checks
validate_args(fmt, self.args, fmts_dict["Arguments"][flags.index(True) + 1])
if imx and not self.args.int8:
LOGGER.warning("WARNING ⚠ IMX only supports int8 export, setting int8=True.")
self.args.int8 = True

@ -90,7 +90,7 @@ def benchmark(
y = []
t0 = time.time()
for i, (name, format, suffix, cpu, gpu) in enumerate(zip(*export_formats().values())):
for i, (name, format, suffix, cpu, gpu, _) in enumerate(zip(*export_formats().values())):
emoji, filename = "", None # export defaults
try:
# Checks

Loading…
Cancel
Save