Update `parking-management` solution (#16990)

Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
pull/16994/head
Muhammad Rizwan Munawar 1 month ago committed by GitHub
parent 22ebd44f62
commit 1c650ab04c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 10
      docs/en/guides/parking-management.md
  2. 1
      ultralytics/cfg/solutions/default.yaml
  3. 270
      ultralytics/solutions/parking_management.py

@ -102,12 +102,10 @@ Parking management with [Ultralytics YOLO11](https://github.com/ultralytics/ultr
### Optional Arguments `ParkingManagement`
| Name | Type | Default | Description |
| ------------------------ | ------- | ------------- | -------------------------------------------------------------- |
| `model` | `str` | `None` | Path to the YOLO11 model. |
| `json_file` | `str` | `None` | Path to the JSON file, that have all parking coordinates data. |
| `occupied_region_color` | `tuple` | `(0, 0, 255)` | RGB color for occupied regions. |
| `available_region_color` | `tuple` | `(0, 255, 0)` | RGB color for available regions. |
| Name | Type | Default | Description |
| ----------- | ----- | ------- | -------------------------------------------------------------- |
| `model` | `str` | `None` | Path to the YOLO11 model. |
| `json_file` | `str` | `None` | Path to the JSON file, that have all parking coordinates data. |
### Arguments `model.track`

@ -15,3 +15,4 @@ down_angle: 90 # Workouts down_angle for counts, 90 is default value. You can ch
kpts: [6, 8, 10] # Keypoints for workouts monitoring, i.e. If you want to consider keypoints for pushups that have mostly values of [6, 8, 10].
colormap: # Colormap for heatmap, Only OPENCV supported colormaps can be used. By default COLORMAP_PARULA will be used for visualization.
analytics_type: "line" # Analytics type i.e "line", "pie", "bar" or "area" charts. By default, "line" analytics will be used for processing.
json_file: # parking system regions file path.

@ -4,8 +4,9 @@ import json
import cv2
import numpy as np
from PIL import Image, ImageTk
from ultralytics.utils.checks import check_imshow, check_requirements
from ultralytics.solutions.solutions import LOGGER, BaseSolution, check_requirements
from ultralytics.utils.plotting import Annotator
@ -13,229 +14,158 @@ class ParkingPtsSelection:
"""Class for selecting and managing parking zone points on images using a Tkinter-based UI."""
def __init__(self):
"""Initializes the UI for selecting parking zone points in a tkinter window."""
"""Class initialization method."""
check_requirements("tkinter")
import tkinter as tk
from tkinter import filedialog, messagebox
import tkinter as tk # scope for multi-environment compatibility
self.tk, self.filedialog, self.messagebox = tk, filedialog, messagebox
self.setup_ui()
self.initialize_properties()
self.master.mainloop()
self.tk = tk
self.master = tk.Tk()
def setup_ui(self):
"""Sets up the Tkinter UI components."""
self.master = self.tk.Tk()
self.master.title("Ultralytics Parking Zones Points Selector")
# Disable window resizing
self.master.resizable(False, False)
# Setup canvas for image display
# Canvas for image display
self.canvas = self.tk.Canvas(self.master, bg="white")
self.canvas.pack(side=self.tk.BOTTOM)
# Setup buttons
# Button frame with buttons
button_frame = self.tk.Frame(self.master)
button_frame.pack(side=self.tk.TOP)
self.tk.Button(button_frame, text="Upload Image", command=self.upload_image).grid(row=0, column=0)
self.tk.Button(button_frame, text="Remove Last BBox", command=self.remove_last_bounding_box).grid(
row=0, column=1
)
self.tk.Button(button_frame, text="Save", command=self.save_to_json).grid(row=0, column=2)
# Initialize properties
self.image_path = None
self.image = None
self.canvas_image = None
self.rg_data = [] # region coordinates
self.current_box = []
self.imgw = 0 # image width
self.imgh = 0 # image height
# Constants
self.canvas_max_width = 1280
self.canvas_max_height = 720
self.master.mainloop()
for text, cmd in [
("Upload Image", self.upload_image),
("Remove Last BBox", self.remove_last_bounding_box),
("Save", self.save_to_json),
]:
self.tk.Button(button_frame, text=text, command=cmd).pack(side=self.tk.LEFT)
def initialize_properties(self):
"""Initialize the necessary properties."""
self.image = self.canvas_image = None
self.rg_data, self.current_box = [], []
self.imgw = self.imgh = 0
self.canvas_max_width, self.canvas_max_height = 1280, 720
def upload_image(self):
"""Upload an image and resize it to fit canvas."""
from tkinter import filedialog
from PIL import Image, ImageTk # scope because ImageTk requires tkinter package
self.image_path = filedialog.askopenfilename(filetypes=[("Image Files", "*.png;*.jpg;*.jpeg")])
if not self.image_path:
"""Uploads an image, resizes it to fit the canvas, and displays it."""
self.image = Image.open(self.filedialog.askopenfilename(filetypes=[("Image Files", "*.png;*.jpg;*.jpeg")]))
if not self.image:
return
self.image = Image.open(self.image_path)
self.imgw, self.imgh = self.image.size
# Calculate the aspect ratio and resize image
aspect_ratio = self.imgw / self.imgh
if aspect_ratio > 1:
# Landscape orientation
canvas_width = min(self.canvas_max_width, self.imgw)
canvas_height = int(canvas_width / aspect_ratio)
else:
# Portrait orientation
canvas_height = min(self.canvas_max_height, self.imgh)
canvas_width = int(canvas_height * aspect_ratio)
# Check if canvas is already initialized
if self.canvas:
self.canvas.destroy() # Destroy previous canvas
self.canvas = self.tk.Canvas(self.master, bg="white", width=canvas_width, height=canvas_height)
resized_image = self.image.resize((canvas_width, canvas_height), Image.LANCZOS)
self.canvas_image = ImageTk.PhotoImage(resized_image)
self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image)
canvas_width = (
min(self.canvas_max_width, self.imgw) if aspect_ratio > 1 else int(self.canvas_max_height * aspect_ratio)
)
canvas_height = (
min(self.canvas_max_height, self.imgh) if aspect_ratio <= 1 else int(canvas_width / aspect_ratio)
)
self.canvas.pack(side=self.tk.BOTTOM)
self.canvas.bind("<Button-1>", self.on_canvas_click)
self.canvas.config(width=canvas_width, height=canvas_height)
self.display_image(canvas_width, canvas_height)
self.rg_data.clear(), self.current_box.clear()
# Reset bounding boxes and current box
self.rg_data = []
self.current_box = []
def display_image(self, width, height):
"""Displays the resized image on the canvas."""
self.canvas_image = ImageTk.PhotoImage(self.image.resize((width, height), Image.LANCZOS))
self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image)
self.canvas.bind("<Button-1>", self.on_canvas_click)
def on_canvas_click(self, event):
"""Handle mouse clicks on canvas to create points for bounding boxes."""
"""Handles mouse clicks to add points for bounding boxes."""
self.current_box.append((event.x, event.y))
self.canvas.create_oval(event.x - 3, event.y - 3, event.x + 3, event.y + 3, fill="red")
if len(self.current_box) == 4:
self.rg_data.append(self.current_box)
[
self.canvas.create_line(self.current_box[i], self.current_box[(i + 1) % 4], fill="blue", width=2)
for i in range(4)
]
self.current_box = []
self.rg_data.append(self.current_box.copy())
self.draw_box(self.current_box)
self.current_box.clear()
def remove_last_bounding_box(self):
"""Remove the last drawn bounding box from canvas."""
from tkinter import messagebox # scope for multi-environment compatibility
def draw_box(self, box):
"""Draws a bounding box on the canvas."""
for i in range(4):
self.canvas.create_line(box[i], box[(i + 1) % 4], fill="blue", width=2)
if self.rg_data:
self.rg_data.pop() # Remove the last bounding box
self.canvas.delete("all") # Clear the canvas
self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image) # Redraw the image
def remove_last_bounding_box(self):
"""Removes the last bounding box and redraws the canvas."""
if not self.rg_data:
self.messagebox.showwarning("Warning", "No bounding boxes to remove.")
return
self.rg_data.pop()
self.redraw_canvas()
# Redraw all bounding boxes
for box in self.rg_data:
[self.canvas.create_line(box[i], box[(i + 1) % 4], fill="blue", width=2) for i in range(4)]
messagebox.showinfo("Success", "Last bounding box removed.")
else:
messagebox.showwarning("Warning", "No bounding boxes to remove.")
def redraw_canvas(self):
"""Redraws the canvas with the image and all bounding boxes."""
self.canvas.delete("all")
self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image)
for box in self.rg_data:
self.draw_box(box)
def save_to_json(self):
"""Saves rescaled bounding boxes to 'bounding_boxes.json' based on image-to-canvas size ratio."""
from tkinter import messagebox # scope for multi-environment compatibility
rg_data = [] # regions data
for box in self.rg_data:
rs_box = [
(
int(x * self.imgw / self.canvas.winfo_width()), # width scaling
int(y * self.imgh / self.canvas.winfo_height()), # height scaling
)
for x, y in box
]
rg_data.append({"points": rs_box})
"""Saves the bounding boxes to a JSON file."""
scale_w, scale_h = self.imgw / self.canvas.winfo_width(), self.imgh / self.canvas.winfo_height()
data = [{"points": [(int(x * scale_w), int(y * scale_h)) for x, y in box]} for box in self.rg_data]
with open("bounding_boxes.json", "w") as f:
json.dump(rg_data, f, indent=4)
messagebox.showinfo("Success", "Bounding boxes saved to bounding_boxes.json")
json.dump(data, f, indent=4)
self.messagebox.showinfo("Success", "Bounding boxes saved to bounding_boxes.json")
class ParkingManagement:
class ParkingManagement(BaseSolution):
"""Manages parking occupancy and availability using YOLO model for real-time monitoring and visualization."""
def __init__(
self,
model, # Ultralytics YOLO model file path
json_file, # Parking management annotation file created from Parking Annotator
occupied_region_color=(0, 0, 255), # occupied region color
available_region_color=(0, 255, 0), # available region color
):
"""
Initializes the parking management system with a YOLO model and visualization settings.
def __init__(self, **kwargs):
"""Initializes the parking management system with a YOLO model and visualization settings."""
super().__init__(**kwargs)
Args:
model (str): Path to the YOLO model.
json_file (str): file that have all parking slot points data
occupied_region_color (tuple): RGB color tuple for occupied regions.
available_region_color (tuple): RGB color tuple for available regions.
"""
# Model initialization
from ultralytics import YOLO
self.json_file = self.CFG["json_file"] # Load JSON data
if self.json_file is None:
LOGGER.warning("❌ json_file argument missing. Parking region details required.")
raise ValueError("❌ Json file path can not be empty")
self.model = YOLO(model)
# Load JSON data
with open(json_file) as f:
self.json_data = json.load(f)
with open(self.json_file) as f:
self.json = json.load(f)
self.pr_info = {"Occupancy": 0, "Available": 0} # dictionary for parking information
self.occ = occupied_region_color
self.arc = available_region_color
self.env_check = check_imshow(warn=True) # check if environment supports imshow
self.arc = (0, 0, 255) # available region color
self.occ = (0, 255, 0) # occupied region color
self.dc = (255, 0, 189) # centroid color for each box
def process_data(self, im0):
"""
Process the model data for parking lot management.
Args:
im0 (ndarray): inference image
im0 (ndarray): inference image.
"""
results = self.model.track(im0, persist=True, show=False) # object tracking
self.extract_tracks(im0) # extract tracks from im0
es, fs = len(self.json), 0 # empty slots, filled slots
annotator = Annotator(im0, self.line_width) # init annotator
es, fs = len(self.json_data), 0 # empty slots, filled slots
annotator = Annotator(im0) # init annotator
# extract tracks data
if results[0].boxes.id is None:
self.display_frames(im0)
return im0
boxes = results[0].boxes.xyxy.cpu().tolist()
clss = results[0].boxes.cls.cpu().tolist()
for region in self.json_data:
for region in self.json:
# Convert points to a NumPy array with the correct dtype and reshape properly
pts_array = np.array(region["points"], dtype=np.int32).reshape((-1, 1, 2))
rg_occupied = False # occupied region initialization
for box, cls in zip(boxes, clss):
xc = int((box[0] + box[2]) / 2)
yc = int((box[1] + box[3]) / 2)
annotator.display_objects_labels(
im0, self.model.names[int(cls)], (104, 31, 17), (255, 255, 255), xc, yc, 10
)
for box, cls in zip(self.boxes, self.clss):
xc, yc = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
dist = cv2.pointPolygonTest(pts_array, (xc, yc), False)
if dist >= 0:
# cv2.circle(im0, (xc, yc), radius=self.line_width * 4, color=self.dc, thickness=-1)
annotator.display_objects_labels(
im0, self.model.names[int(cls)], (104, 31, 17), (255, 255, 255), xc, yc, 10
)
rg_occupied = True
break
if rg_occupied:
fs += 1
es -= 1
fs, es = (fs + 1, es - 1) if rg_occupied else (fs, es)
# Plotting regions
color = self.occ if rg_occupied else self.arc
cv2.polylines(im0, [pts_array], isClosed=True, color=color, thickness=2)
cv2.polylines(im0, [pts_array], isClosed=True, color=self.occ if rg_occupied else self.arc, thickness=2)
self.pr_info["Occupancy"] = fs
self.pr_info["Available"] = es
self.pr_info["Occupancy"], self.pr_info["Available"] = fs, es
annotator.display_analytics(im0, self.pr_info, (104, 31, 17), (255, 255, 255), 10)
self.display_frames(im0)
return im0
def display_frames(self, im0):
"""
Display frame.
Args:
im0 (ndarray): inference image
"""
if self.env_check:
cv2.imshow("Ultralytics Parking Manager", im0)
# Break Window
if cv2.waitKey(1) & 0xFF == ord("q"):
return
self.display_output(im0) # display output with base class function
return im0 # return output image for more usage

Loading…
Cancel
Save