Update modules.py (#222)

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/219/head^2
Shuangchi He 2 years ago committed by GitHub
parent 00c57f2c97
commit 1c3863733e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 10
      ultralytics/nn/modules.py

@ -134,7 +134,7 @@ class TransformerBlock(nn.Module):
class Bottleneck(nn.Module):
# Standard bottleneck
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, groups, kernels, expand
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, k[0], 1)
@ -234,8 +234,8 @@ class SpatialAttention(nn.Module):
class CBAM(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, ratio=16, kernel_size=7): # ch_in, ch_out, number, shortcut, groups, expansion
# Convolutional Block Attention Module
def __init__(self, c1, kernel_size=7): # ch_in, kernels
super().__init__()
self.channel_attention = ChannelAttention(c1)
self.spatial_attention = SpatialAttention(kernel_size)
@ -245,8 +245,8 @@ class CBAM(nn.Module):
class C1(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1): # ch_in, ch_out, number, shortcut, groups, expansion
# CSP Bottleneck with 1 convolution
def __init__(self, c1, c2, n=1): # ch_in, ch_out, number
super().__init__()
self.cv1 = Conv(c1, c2, 1, 1)
self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))

Loading…
Cancel
Save