Add tuner.py to Docs (#3689)

pull/3687/head^2
Glenn Jocher 1 year ago committed by GitHub
parent 44aa18c99a
commit 18ada51931
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 9
      docs/reference/yolo/utils/tuner.md
  2. 1
      mkdocs.yml
  3. 2
      setup.py
  4. 10
      ultralytics/yolo/engine/model.py

@ -0,0 +1,9 @@
---
description: Optimize YOLO models' hyperparameters with Ultralytics YOLO's `run_ray_tune` function using Ray Tune and ASHA scheduler.
keywords: Ultralytics YOLO, Hyperparameter Tuning, Ray Tune, ASHAScheduler, Optimization, Object Detection
---
## run_ray_tune
---
### ::: ultralytics.yolo.utils.tuner.run_ray_tune
<br><br>

@ -351,6 +351,7 @@ nav:
- plotting: reference/yolo/utils/plotting.md - plotting: reference/yolo/utils/plotting.md
- tal: reference/yolo/utils/tal.md - tal: reference/yolo/utils/tal.md
- torch_utils: reference/yolo/utils/torch_utils.md - torch_utils: reference/yolo/utils/torch_utils.md
- tuner: reference/yolo/utils/tuner.md
- v8: - v8:
- classify: - classify:
- predict: reference/yolo/v8/classify/predict.md - predict: reference/yolo/v8/classify/predict.md

@ -46,7 +46,7 @@ setup(
'mkdocs-material', 'mkdocs-material',
'mkdocstrings[python]', 'mkdocstrings[python]',
'mkdocs-redirects', # for 301 redirects 'mkdocs-redirects', # for 301 redirects
'mkdocs-ultralytics-plugin', # for meta descriptions and images, dates and authors 'mkdocs-ultralytics-plugin>=0.0.21', # for meta descriptions and images, dates and authors
], ],
'export': ['coremltools>=6.0', 'openvino-dev>=2022.3', 'tensorflowjs'], # automatically installs tensorflow 'export': ['coremltools>=6.0', 'openvino-dev>=2022.3', 'tensorflowjs'], # automatically installs tensorflow
}, },

@ -389,15 +389,7 @@ class YOLO:
def tune(self, *args, **kwargs): def tune(self, *args, **kwargs):
""" """
Runs hyperparameter tuning using Ray Tune. Runs hyperparameter tuning using Ray Tune. See ultralytics.yolo.utils.tuner.run_ray_tune for Args.
Args:
data (str): The dataset to run the tuner on.
space (dict, optional): The hyperparameter search space. Defaults to None.
grace_period (int, optional): The grace period in epochs of the ASHA scheduler. Defaults to 10.
gpu_per_trial (int, optional): The number of GPUs to allocate per trial. Defaults to None.
max_samples (int, optional): The maximum number of trials to run. Defaults to 10.
train_args (dict, optional): Additional arguments to pass to the `train()` method. Defaults to {}.
Returns: Returns:
(dict): A dictionary containing the results of the hyperparameter search. (dict): A dictionary containing the results of the hyperparameter search.

Loading…
Cancel
Save