|
|
|
@ -0,0 +1,402 @@ |
|
|
|
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license |
|
|
|
|
""" |
|
|
|
|
Image augmentation functions |
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
import math |
|
|
|
|
import random |
|
|
|
|
|
|
|
|
|
import cv2 |
|
|
|
|
import numpy as np |
|
|
|
|
import torch |
|
|
|
|
import torchvision.transforms as T |
|
|
|
|
import torchvision.transforms.functional as TF |
|
|
|
|
|
|
|
|
|
from ultralytics.yolo.utils import LOGGER, colorstr |
|
|
|
|
from ultralytics.yolo.utils.checks import check_version |
|
|
|
|
from ultralytics.yolo.utils.metrics import bbox_ioa |
|
|
|
|
from ultralytics.yolo.utils.ops import resample_segments, segment2box, xywhn2xyxy |
|
|
|
|
|
|
|
|
|
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean |
|
|
|
|
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Albumentations: |
|
|
|
|
# YOLOv5 Albumentations class (optional, only used if package is installed) |
|
|
|
|
def __init__(self, size=640): |
|
|
|
|
self.transform = None |
|
|
|
|
prefix = colorstr('albumentations: ') |
|
|
|
|
try: |
|
|
|
|
import albumentations as A |
|
|
|
|
check_version(A.__version__, '1.0.3', hard=True) # version requirement |
|
|
|
|
|
|
|
|
|
T = [ |
|
|
|
|
A.RandomResizedCrop(height=size, width=size, scale=(0.8, 1.0), ratio=(0.9, 1.11), p=0.0), |
|
|
|
|
A.Blur(p=0.01), |
|
|
|
|
A.MedianBlur(p=0.01), |
|
|
|
|
A.ToGray(p=0.01), |
|
|
|
|
A.CLAHE(p=0.01), |
|
|
|
|
A.RandomBrightnessContrast(p=0.0), |
|
|
|
|
A.RandomGamma(p=0.0), |
|
|
|
|
A.ImageCompression(quality_lower=75, p=0.0)] # transforms |
|
|
|
|
self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels'])) |
|
|
|
|
|
|
|
|
|
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) |
|
|
|
|
except ImportError: # package not installed, skip |
|
|
|
|
pass |
|
|
|
|
except Exception as e: |
|
|
|
|
LOGGER.info(f'{prefix}{e}') |
|
|
|
|
|
|
|
|
|
def __call__(self, im, labels, p=1.0): |
|
|
|
|
if self.transform and random.random() < p: |
|
|
|
|
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed |
|
|
|
|
im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])]) |
|
|
|
|
return im, labels |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False): |
|
|
|
|
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = (x - mean) / std |
|
|
|
|
return TF.normalize(x, mean, std, inplace=inplace) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD): |
|
|
|
|
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = x * std + mean |
|
|
|
|
for i in range(3): |
|
|
|
|
x[:, i] = x[:, i] * std[i] + mean[i] |
|
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5): |
|
|
|
|
# HSV color-space augmentation |
|
|
|
|
if hgain or sgain or vgain: |
|
|
|
|
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains |
|
|
|
|
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV)) |
|
|
|
|
dtype = im.dtype # uint8 |
|
|
|
|
|
|
|
|
|
x = np.arange(0, 256, dtype=r.dtype) |
|
|
|
|
lut_hue = ((x * r[0]) % 180).astype(dtype) |
|
|
|
|
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) |
|
|
|
|
lut_val = np.clip(x * r[2], 0, 255).astype(dtype) |
|
|
|
|
|
|
|
|
|
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) |
|
|
|
|
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def hist_equalize(im, clahe=True, bgr=False): |
|
|
|
|
# Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255 |
|
|
|
|
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV) |
|
|
|
|
if clahe: |
|
|
|
|
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) |
|
|
|
|
yuv[:, :, 0] = c.apply(yuv[:, :, 0]) |
|
|
|
|
else: |
|
|
|
|
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram |
|
|
|
|
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def replicate(im, labels): |
|
|
|
|
# Replicate labels |
|
|
|
|
h, w = im.shape[:2] |
|
|
|
|
boxes = labels[:, 1:].astype(int) |
|
|
|
|
x1, y1, x2, y2 = boxes.T |
|
|
|
|
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels) |
|
|
|
|
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices |
|
|
|
|
x1b, y1b, x2b, y2b = boxes[i] |
|
|
|
|
bh, bw = y2b - y1b, x2b - x1b |
|
|
|
|
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y |
|
|
|
|
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] |
|
|
|
|
im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax] |
|
|
|
|
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) |
|
|
|
|
|
|
|
|
|
return im, labels |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): |
|
|
|
|
# Resize and pad image while meeting stride-multiple constraints |
|
|
|
|
shape = im.shape[:2] # current shape [height, width] |
|
|
|
|
if isinstance(new_shape, int): |
|
|
|
|
new_shape = (new_shape, new_shape) |
|
|
|
|
|
|
|
|
|
# Scale ratio (new / old) |
|
|
|
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) |
|
|
|
|
if not scaleup: # only scale down, do not scale up (for better val mAP) |
|
|
|
|
r = min(r, 1.0) |
|
|
|
|
|
|
|
|
|
# Compute padding |
|
|
|
|
ratio = r, r # width, height ratios |
|
|
|
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) |
|
|
|
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding |
|
|
|
|
if auto: # minimum rectangle |
|
|
|
|
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding |
|
|
|
|
elif scaleFill: # stretch |
|
|
|
|
dw, dh = 0.0, 0.0 |
|
|
|
|
new_unpad = (new_shape[1], new_shape[0]) |
|
|
|
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios |
|
|
|
|
|
|
|
|
|
dw /= 2 # divide padding into 2 sides |
|
|
|
|
dh /= 2 |
|
|
|
|
|
|
|
|
|
if shape[::-1] != new_unpad: # resize |
|
|
|
|
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) |
|
|
|
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) |
|
|
|
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) |
|
|
|
|
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border |
|
|
|
|
return im, ratio, (dw, dh) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def random_perspective(im, |
|
|
|
|
targets=(), |
|
|
|
|
segments=(), |
|
|
|
|
degrees=10, |
|
|
|
|
translate=.1, |
|
|
|
|
scale=.1, |
|
|
|
|
shear=10, |
|
|
|
|
perspective=0.0, |
|
|
|
|
border=(0, 0)): |
|
|
|
|
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10)) |
|
|
|
|
# targets = [cls, xyxy] |
|
|
|
|
|
|
|
|
|
height = im.shape[0] + border[0] * 2 # shape(h,w,c) |
|
|
|
|
width = im.shape[1] + border[1] * 2 |
|
|
|
|
|
|
|
|
|
# Center |
|
|
|
|
C = np.eye(3) |
|
|
|
|
C[0, 2] = -im.shape[1] / 2 # x translation (pixels) |
|
|
|
|
C[1, 2] = -im.shape[0] / 2 # y translation (pixels) |
|
|
|
|
|
|
|
|
|
# Perspective |
|
|
|
|
P = np.eye(3) |
|
|
|
|
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y) |
|
|
|
|
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x) |
|
|
|
|
|
|
|
|
|
# Rotation and Scale |
|
|
|
|
R = np.eye(3) |
|
|
|
|
a = random.uniform(-degrees, degrees) |
|
|
|
|
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations |
|
|
|
|
s = random.uniform(1 - scale, 1 + scale) |
|
|
|
|
# s = 2 ** random.uniform(-scale, scale) |
|
|
|
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) |
|
|
|
|
|
|
|
|
|
# Shear |
|
|
|
|
S = np.eye(3) |
|
|
|
|
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) |
|
|
|
|
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) |
|
|
|
|
|
|
|
|
|
# Translation |
|
|
|
|
T = np.eye(3) |
|
|
|
|
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels) |
|
|
|
|
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels) |
|
|
|
|
|
|
|
|
|
# Combined rotation matrix |
|
|
|
|
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT |
|
|
|
|
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed |
|
|
|
|
if perspective: |
|
|
|
|
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114)) |
|
|
|
|
else: # affine |
|
|
|
|
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) |
|
|
|
|
|
|
|
|
|
# Visualize |
|
|
|
|
# import matplotlib.pyplot as plt |
|
|
|
|
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() |
|
|
|
|
# ax[0].imshow(im[:, :, ::-1]) # base |
|
|
|
|
# ax[1].imshow(im2[:, :, ::-1]) # warped |
|
|
|
|
|
|
|
|
|
# Transform label coordinates |
|
|
|
|
n = len(targets) |
|
|
|
|
if n: |
|
|
|
|
use_segments = any(x.any() for x in segments) |
|
|
|
|
new = np.zeros((n, 4)) |
|
|
|
|
if use_segments: # warp segments |
|
|
|
|
segments = resample_segments(segments) # upsample |
|
|
|
|
for i, segment in enumerate(segments): |
|
|
|
|
xy = np.ones((len(segment), 3)) |
|
|
|
|
xy[:, :2] = segment |
|
|
|
|
xy = xy @ M.T # transform |
|
|
|
|
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine |
|
|
|
|
|
|
|
|
|
# clip |
|
|
|
|
new[i] = segment2box(xy, width, height) |
|
|
|
|
|
|
|
|
|
else: # warp boxes |
|
|
|
|
xy = np.ones((n * 4, 3)) |
|
|
|
|
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 |
|
|
|
|
xy = xy @ M.T # transform |
|
|
|
|
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine |
|
|
|
|
|
|
|
|
|
# create new boxes |
|
|
|
|
x = xy[:, [0, 2, 4, 6]] |
|
|
|
|
y = xy[:, [1, 3, 5, 7]] |
|
|
|
|
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T |
|
|
|
|
|
|
|
|
|
# clip |
|
|
|
|
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width) |
|
|
|
|
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height) |
|
|
|
|
|
|
|
|
|
# filter candidates |
|
|
|
|
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10) |
|
|
|
|
targets = targets[i] |
|
|
|
|
targets[:, 1:5] = new[i] |
|
|
|
|
|
|
|
|
|
return im, targets |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def copy_paste(im, labels, segments, p=0.5): |
|
|
|
|
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) |
|
|
|
|
n = len(segments) |
|
|
|
|
if p and n: |
|
|
|
|
h, w, c = im.shape # height, width, channels |
|
|
|
|
im_new = np.zeros(im.shape, np.uint8) |
|
|
|
|
|
|
|
|
|
# calculate ioa first then select indexes randomly |
|
|
|
|
boxes = np.stack([w - labels[:, 3], labels[:, 2], w - labels[:, 1], labels[:, 4]], axis=-1) # (n, 4) |
|
|
|
|
ioa = bbox_ioa(boxes, labels[:, 1:5]) # intersection over area |
|
|
|
|
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, ) |
|
|
|
|
n = len(indexes) |
|
|
|
|
for j in random.sample(list(indexes), k=round(p * n)): |
|
|
|
|
l, box, s = labels[j], boxes[j], segments[j] |
|
|
|
|
labels = np.concatenate((labels, [[l[0], *box]]), 0) |
|
|
|
|
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)) |
|
|
|
|
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED) |
|
|
|
|
|
|
|
|
|
result = cv2.flip(im, 1) # augment segments (flip left-right) |
|
|
|
|
i = cv2.flip(im_new, 1).astype(bool) |
|
|
|
|
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug |
|
|
|
|
|
|
|
|
|
return im, labels, segments |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def cutout(im, labels, p=0.5): |
|
|
|
|
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552 |
|
|
|
|
if random.random() < p: |
|
|
|
|
h, w = im.shape[:2] |
|
|
|
|
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction |
|
|
|
|
for s in scales: |
|
|
|
|
mask_h = random.randint(1, int(h * s)) # create random masks |
|
|
|
|
mask_w = random.randint(1, int(w * s)) |
|
|
|
|
|
|
|
|
|
# box |
|
|
|
|
xmin = max(0, random.randint(0, w) - mask_w // 2) |
|
|
|
|
ymin = max(0, random.randint(0, h) - mask_h // 2) |
|
|
|
|
xmax = min(w, xmin + mask_w) |
|
|
|
|
ymax = min(h, ymin + mask_h) |
|
|
|
|
|
|
|
|
|
# apply random color mask |
|
|
|
|
im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] |
|
|
|
|
|
|
|
|
|
# return unobscured labels |
|
|
|
|
if len(labels) and s > 0.03: |
|
|
|
|
box = np.array([[xmin, ymin, xmax, ymax]], dtype=np.float32) |
|
|
|
|
ioa = bbox_ioa(box, xywhn2xyxy(labels[:, 1:5], w, h))[0] # intersection over area |
|
|
|
|
labels = labels[ioa < 0.60] # remove >60% obscured labels |
|
|
|
|
|
|
|
|
|
return labels |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mixup(im, labels, im2, labels2): |
|
|
|
|
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf |
|
|
|
|
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 |
|
|
|
|
im = (im * r + im2 * (1 - r)).astype(np.uint8) |
|
|
|
|
labels = np.concatenate((labels, labels2), 0) |
|
|
|
|
return im, labels |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n) |
|
|
|
|
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio |
|
|
|
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1] |
|
|
|
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1] |
|
|
|
|
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio |
|
|
|
|
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def classify_albumentations( |
|
|
|
|
augment=True, |
|
|
|
|
size=224, |
|
|
|
|
scale=(0.08, 1.0), |
|
|
|
|
ratio=(0.75, 1.0 / 0.75), # 0.75, 1.33 |
|
|
|
|
hflip=0.5, |
|
|
|
|
vflip=0.0, |
|
|
|
|
jitter=0.4, |
|
|
|
|
mean=IMAGENET_MEAN, |
|
|
|
|
std=IMAGENET_STD, |
|
|
|
|
auto_aug=False): |
|
|
|
|
# YOLOv5 classification Albumentations (optional, only used if package is installed) |
|
|
|
|
prefix = colorstr('albumentations: ') |
|
|
|
|
try: |
|
|
|
|
import albumentations as A |
|
|
|
|
from albumentations.pytorch import ToTensorV2 |
|
|
|
|
check_version(A.__version__, '1.0.3', hard=True) # version requirement |
|
|
|
|
if augment: # Resize and crop |
|
|
|
|
T = [A.RandomResizedCrop(height=size, width=size, scale=scale, ratio=ratio)] |
|
|
|
|
if auto_aug: |
|
|
|
|
# TODO: implement AugMix, AutoAug & RandAug in albumentation |
|
|
|
|
LOGGER.info(f'{prefix}auto augmentations are currently not supported') |
|
|
|
|
else: |
|
|
|
|
if hflip > 0: |
|
|
|
|
T += [A.HorizontalFlip(p=hflip)] |
|
|
|
|
if vflip > 0: |
|
|
|
|
T += [A.VerticalFlip(p=vflip)] |
|
|
|
|
if jitter > 0: |
|
|
|
|
color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, satuaration, 0 hue |
|
|
|
|
T += [A.ColorJitter(*color_jitter, 0)] |
|
|
|
|
else: # Use fixed crop for eval set (reproducibility) |
|
|
|
|
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)] |
|
|
|
|
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor |
|
|
|
|
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) |
|
|
|
|
return A.Compose(T) |
|
|
|
|
|
|
|
|
|
except ImportError: # package not installed, skip |
|
|
|
|
LOGGER.warning(f'{prefix}⚠️ not found, install with `pip install albumentations` (recommended)') |
|
|
|
|
except Exception as e: |
|
|
|
|
LOGGER.info(f'{prefix}{e}') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def classify_transforms(size=224): |
|
|
|
|
# Transforms to apply if albumentations not installed |
|
|
|
|
assert isinstance(size, int), f'ERROR: classify_transforms size {size} must be integer, not (list, tuple)' |
|
|
|
|
# T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)]) |
|
|
|
|
return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LetterBox: |
|
|
|
|
# YOLOv5 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) |
|
|
|
|
def __init__(self, size=(640, 640), auto=False, stride=32): |
|
|
|
|
super().__init__() |
|
|
|
|
self.h, self.w = (size, size) if isinstance(size, int) else size |
|
|
|
|
self.auto = auto # pass max size integer, automatically solve for short side using stride |
|
|
|
|
self.stride = stride # used with auto |
|
|
|
|
|
|
|
|
|
def __call__(self, im): # im = np.array HWC |
|
|
|
|
imh, imw = im.shape[:2] |
|
|
|
|
r = min(self.h / imh, self.w / imw) # ratio of new/old |
|
|
|
|
h, w = round(imh * r), round(imw * r) # resized image |
|
|
|
|
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w |
|
|
|
|
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) |
|
|
|
|
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype) |
|
|
|
|
im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) |
|
|
|
|
return im_out |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CenterCrop: |
|
|
|
|
# YOLOv5 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()]) |
|
|
|
|
def __init__(self, size=640): |
|
|
|
|
super().__init__() |
|
|
|
|
self.h, self.w = (size, size) if isinstance(size, int) else size |
|
|
|
|
|
|
|
|
|
def __call__(self, im): # im = np.array HWC |
|
|
|
|
imh, imw = im.shape[:2] |
|
|
|
|
m = min(imh, imw) # min dimension |
|
|
|
|
top, left = (imh - m) // 2, (imw - m) // 2 |
|
|
|
|
return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ToTensor: |
|
|
|
|
# YOLOv5 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) |
|
|
|
|
def __init__(self, half=False): |
|
|
|
|
super().__init__() |
|
|
|
|
self.half = half |
|
|
|
|
|
|
|
|
|
def __call__(self, im): # im = np.array HWC in BGR order |
|
|
|
|
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous |
|
|
|
|
im = torch.from_numpy(im) # to torch |
|
|
|
|
im = im.half() if self.half else im.float() # uint8 to fp16/32 |
|
|
|
|
im /= 255.0 # 0-255 to 0.0-1.0 |
|
|
|
|
return im |