From 15a92f214b5aa4208f27b6fce04a91c63d5bfe53 Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Sun, 3 Mar 2024 23:30:13 +0100 Subject: [PATCH] Fix docs griffe warning Signed-off-by: Glenn Jocher --- ultralytics/nn/modules/block.py | 20 ++++++++++++++------ 1 file changed, 14 insertions(+), 6 deletions(-) diff --git a/ultralytics/nn/modules/block.py b/ultralytics/nn/modules/block.py index 97d140af1..df8bc6497 100644 --- a/ultralytics/nn/modules/block.py +++ b/ultralytics/nn/modules/block.py @@ -558,7 +558,8 @@ class BNContrastiveHead(nn.Module): class RepBottleneck(nn.Module): """Rep bottleneck.""" - def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand + def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): + """Initializes a RepBottleneck module with customizable in/out channels, shortcut option, groups and expansion ratio.""" super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = RepConv(c1, c_, k[0], 1) @@ -573,7 +574,8 @@ class RepBottleneck(nn.Module): class RepCSP(nn.Module): """Rep CSP Bottleneck with 3 convolutions.""" - def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): + """Initializes RepCSP layer with given channels, repetitions, shortcut, groups and expansion ratio.""" super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) @@ -589,7 +591,8 @@ class RepCSP(nn.Module): class RepNCSPELAN4(nn.Module): """CSP-ELAN.""" - def __init__(self, c1, c2, c3, c4, n=1): # ch_in, ch_out, number, shortcut, groups, expansion + def __init__(self, c1, c2, c3, c4, n=1): + """Initializes CSP-ELAN layer with specified channel sizes, repetitions, and convolutions.""" super().__init__() self.c = c3 // 2 self.cv1 = Conv(c1, c3, 1, 1) @@ -613,7 +616,8 @@ class RepNCSPELAN4(nn.Module): class ADown(nn.Module): """ADown.""" - def __init__(self, c1, c2): # ch_in, ch_out, shortcut, kernels, groups, expand + def __init__(self, c1, c2): + """Initializes ADown module with convolution layers to downsample input from channels c1 to c2.""" super().__init__() self.c = c2 // 2 self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1) @@ -632,7 +636,8 @@ class ADown(nn.Module): class SPPELAN(nn.Module): """SPP-ELAN.""" - def __init__(self, c1, c2, c3, k=5): # ch_in, ch_out, number, shortcut, groups, expansion + def __init__(self, c1, c2, c3, k=5): + """Initializes SPP-ELAN block with convolution and max pooling layers for spatial pyramid pooling.""" super().__init__() self.c = c3 self.cv1 = Conv(c1, c3, 1, 1) @@ -652,6 +657,7 @@ class Silence(nn.Module): """Silence.""" def __init__(self): + """Initializes the Silence module.""" super(Silence, self).__init__() def forward(self, x): @@ -662,7 +668,8 @@ class Silence(nn.Module): class CBLinear(nn.Module): """CBLinear.""" - def __init__(self, c1, c2s, k=1, s=1, p=None, g=1): # ch_in, ch_outs, kernel, stride, padding, groups + def __init__(self, c1, c2s, k=1, s=1, p=None, g=1): + """Initializes the CBLinear module, passing inputs unchanged.""" super(CBLinear, self).__init__() self.c2s = c2s self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True) @@ -677,6 +684,7 @@ class CBFuse(nn.Module): """CBFuse.""" def __init__(self, idx): + """Initializes CBFuse module with layer index for selective feature fusion.""" super(CBFuse, self).__init__() self.idx = idx