`ultralytics 8.0.216` fix hard-coded `batch=64` cls loss (#6523)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: HDW AI group <huzhongshan@gmail.com>
pull/6537/head v8.0.216
Glenn Jocher 1 year ago committed by GitHub
parent 16a13a1ce0
commit 10f6ac5e9b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      docs/hi/models/yolov3.md
  2. 3
      docs/hi/models/yolov5.md
  3. 2
      docs/hi/models/yolov8.md
  4. 11
      docs/mkdocs_ar.yml
  5. 11
      docs/mkdocs_de.yml
  6. 11
      docs/mkdocs_es.yml
  7. 11
      docs/mkdocs_fr.yml
  8. 11
      docs/mkdocs_hi.yml
  9. 11
      docs/mkdocs_ja.yml
  10. 11
      docs/mkdocs_ko.yml
  11. 11
      docs/mkdocs_pt.yml
  12. 11
      docs/mkdocs_ru.yml
  13. 11
      docs/mkdocs_zh.yml
  14. 2
      ultralytics/__init__.py
  15. 2
      ultralytics/utils/loss.py

@ -82,7 +82,7 @@ YOLOv3 शखल, इनम YOLOv3, YOLOv3-Ultralytics औ
अगर आप अपनध म YOLOv3 क उपयग करत, तपयल YOLO पपरस और Ultralytics YOLOv3 रििटर उदत कर
!!! उधदरण ""
!!! Quote ""
=== "BibTeX"

@ -72,8 +72,7 @@ YOLOv5u वसपन क तर
model.info()
# COCO8 पिक उदहरण डट पर 100 एपक किए मडल
ka परशिित कर results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
# YOLOv5n मडल कथ 'bus.jpg' छविपन चल
results = model('path/to/bus.jpg')

@ -36,7 +36,7 @@ Yएक मडल क हर मनक, वििट क
## परदरशन कपद
!!! परदरशन
!!! Note "रदरशन"
=== "वसिरण (COCO)"

@ -188,6 +188,17 @@ nav:
- الوضعية: tasks/pose.md
- النماذج:
- models/index.md
- YOLOv3: models/yolov3.md
- YOLOv4: models/yolov4.md
- YOLOv5: models/yolov5.md
- YOLOv6: models/yolov6.md
- YOLOv7: models/yolov7.md
- YOLOv8: models/yolov8.md
- SAM (Segment Anything Model): models/sam.md
- MobileSAM (Mobile Segment Anything Model): models/mobile-sam.md
- FastSAM (Fast Segment Anything Model): models/fast-sam.md
- YOLO-NAS (Neural Architecture Search): models/yolo-nas.md
- RT-DETR (Realtime Detection Transformer): models/rtdetr.md
- المجموعات البيانية:
- datasets/index.md

@ -188,6 +188,17 @@ nav:
- Pose: tasks/pose.md
- Modelle:
- models/index.md
- YOLOv3: models/yolov3.md
- YOLOv4: models/yolov4.md
- YOLOv5: models/yolov5.md
- YOLOv6: models/yolov6.md
- YOLOv7: models/yolov7.md
- YOLOv8: models/yolov8.md
- SAM (Segment Anything Model): models/sam.md
- MobileSAM (Mobile Segment Anything Model): models/mobile-sam.md
- FastSAM (Fast Segment Anything Model): models/fast-sam.md
- YOLO-NAS (Neural Architecture Search): models/yolo-nas.md
- RT-DETR (Realtime Detection Transformer): models/rtdetr.md
- Datensätze:
- datasets/index.md

@ -188,6 +188,17 @@ nav:
- Pose: tasks/pose.md
- Modelos:
- models/index.md
- YOLOv3: models/yolov3.md
- YOLOv4: models/yolov4.md
- YOLOv5: models/yolov5.md
- YOLOv6: models/yolov6.md
- YOLOv7: models/yolov7.md
- YOLOv8: models/yolov8.md
- SAM (Segment Anything Model): models/sam.md
- MobileSAM (Mobile Segment Anything Model): models/mobile-sam.md
- FastSAM (Fast Segment Anything Model): models/fast-sam.md
- YOLO-NAS (Neural Architecture Search): models/yolo-nas.md
- RT-DETR (Realtime Detection Transformer): models/rtdetr.md
- Conjuntos de datos:
- datasets/index.md

@ -188,6 +188,17 @@ nav:
- Pose: tasks/pose.md
- Modèles:
- models/index.md
- YOLOv3: models/yolov3.md
- YOLOv4: models/yolov4.md
- YOLOv5: models/yolov5.md
- YOLOv6: models/yolov6.md
- YOLOv7: models/yolov7.md
- YOLOv8: models/yolov8.md
- SAM (Segment Anything Model): models/sam.md
- MobileSAM (Mobile Segment Anything Model): models/mobile-sam.md
- FastSAM (Fast Segment Anything Model): models/fast-sam.md
- YOLO-NAS (Neural Architecture Search): models/yolo-nas.md
- RT-DETR (Realtime Detection Transformer): models/rtdetr.md
- Jeux de données:
- datasets/index.md

@ -188,6 +188,17 @@ nav:
- : tasks/pose.md
- डल:
- models/index.md
- YOLOv3: models/yolov3.md
- YOLOv4: models/yolov4.md
- YOLOv5: models/yolov5.md
- YOLOv6: models/yolov6.md
- YOLOv7: models/yolov7.md
- YOLOv8: models/yolov8.md
- SAM (Segment Anything Model): models/sam.md
- MobileSAM (Mobile Segment Anything Model): models/mobile-sam.md
- FastSAM (Fast Segment Anything Model): models/fast-sam.md
- YOLO-NAS (Neural Architecture Search): models/yolo-nas.md
- RT-DETR (Realtime Detection Transformer): models/rtdetr.md
- स:
- datasets/index.md

@ -188,6 +188,17 @@ nav:
- ポーズ: tasks/pose.md
- モデル:
- models/index.md
- YOLOv3: models/yolov3.md
- YOLOv4: models/yolov4.md
- YOLOv5: models/yolov5.md
- YOLOv6: models/yolov6.md
- YOLOv7: models/yolov7.md
- YOLOv8: models/yolov8.md
- SAM (Segment Anything Model): models/sam.md
- MobileSAM (Mobile Segment Anything Model): models/mobile-sam.md
- FastSAM (Fast Segment Anything Model): models/fast-sam.md
- YOLO-NAS (Neural Architecture Search): models/yolo-nas.md
- RT-DETR (Realtime Detection Transformer): models/rtdetr.md
- データセット:
- datasets/index.md

@ -188,6 +188,17 @@ nav:
- 포즈: tasks/pose.md
- 모델:
- models/index.md
- YOLOv3: models/yolov3.md
- YOLOv4: models/yolov4.md
- YOLOv5: models/yolov5.md
- YOLOv6: models/yolov6.md
- YOLOv7: models/yolov7.md
- YOLOv8: models/yolov8.md
- SAM (Segment Anything Model): models/sam.md
- MobileSAM (Mobile Segment Anything Model): models/mobile-sam.md
- FastSAM (Fast Segment Anything Model): models/fast-sam.md
- YOLO-NAS (Neural Architecture Search): models/yolo-nas.md
- RT-DETR (Realtime Detection Transformer): models/rtdetr.md
- 데이터셋:
- datasets/index.md

@ -188,6 +188,17 @@ nav:
- Pose: tasks/pose.md
- Modelos:
- models/index.md
- YOLOv3: models/yolov3.md
- YOLOv4: models/yolov4.md
- YOLOv5: models/yolov5.md
- YOLOv6: models/yolov6.md
- YOLOv7: models/yolov7.md
- YOLOv8: models/yolov8.md
- SAM (Segment Anything Model): models/sam.md
- MobileSAM (Mobile Segment Anything Model): models/mobile-sam.md
- FastSAM (Fast Segment Anything Model): models/fast-sam.md
- YOLO-NAS (Neural Architecture Search): models/yolo-nas.md
- RT-DETR (Realtime Detection Transformer): models/rtdetr.md
- Conjuntos de Dados:
- datasets/index.md

@ -188,6 +188,17 @@ nav:
- Поза: tasks/pose.md
- Модели:
- models/index.md
- YOLOv3: models/yolov3.md
- YOLOv4: models/yolov4.md
- YOLOv5: models/yolov5.md
- YOLOv6: models/yolov6.md
- YOLOv7: models/yolov7.md
- YOLOv8: models/yolov8.md
- SAM (Segment Anything Model): models/sam.md
- MobileSAM (Mobile Segment Anything Model): models/mobile-sam.md
- FastSAM (Fast Segment Anything Model): models/fast-sam.md
- YOLO-NAS (Neural Architecture Search): models/yolo-nas.md
- RT-DETR (Realtime Detection Transformer): models/rtdetr.md
- Данные:
- datasets/index.md

@ -188,6 +188,17 @@ nav:
- 姿态: tasks/pose.md
- 模型:
- models/index.md
- YOLOv3: models/yolov3.md
- YOLOv4: models/yolov4.md
- YOLOv5: models/yolov5.md
- YOLOv6: models/yolov6.md
- YOLOv7: models/yolov7.md
- YOLOv8: models/yolov8.md
- SAM (Segment Anything Model): models/sam.md
- MobileSAM (Mobile Segment Anything Model): models/mobile-sam.md
- FastSAM (Fast Segment Anything Model): models/fast-sam.md
- YOLO-NAS (Neural Architecture Search): models/yolo-nas.md
- RT-DETR (Realtime Detection Transformer): models/rtdetr.md
- 数据集:
- datasets/index.md

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = '8.0.215'
__version__ = '8.0.216'
from ultralytics.models import RTDETR, SAM, YOLO
from ultralytics.models.fastsam import FastSAM

@ -523,6 +523,6 @@ class v8ClassificationLoss:
def __call__(self, preds, batch):
"""Compute the classification loss between predictions and true labels."""
loss = torch.nn.functional.cross_entropy(preds, batch['cls'], reduction='sum') / 64
loss = torch.nn.functional.cross_entropy(preds, batch['cls'], reduction='mean')
loss_items = loss.detach()
return loss, loss_items

Loading…
Cancel
Save