Improve Home "Where to Start" Layout in Docs (#16846)

Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Francesco Mattioli <Francesco.mttl@gmail.com>
Co-authored-by: Ultralytics Assistant <135830346+UltralyticsAssistant@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/16913/head
Jan Knobloch 1 month ago committed by GitHub
parent f87b92dbc3
commit 0d901a3660
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 80
      docs/en/index.md

@ -54,11 +54,69 @@ Explore the Ultralytics Docs, a comprehensive resource designed to help you unde
## Where to Start
- **Install** `ultralytics` with pip and get up and running in minutes &nbsp; [:material-clock-fast: Get Started](quickstart.md){ .md-button }
- **Predict** new images and videos with YOLO &nbsp; [:octicons-image-16: Predict on Images](modes/predict.md){ .md-button }
- **Train** a new YOLO model on your own custom dataset &nbsp; [:fontawesome-solid-brain: Train a Model](modes/train.md){ .md-button }
- **Tasks** YOLO tasks like segment, classify, pose and track &nbsp; [:material-magnify-expand: Explore Tasks](tasks/index.md){ .md-button }
- **[YOLO11](models/yolo11.md) 🚀 NEW**: Ultralytics' latest SOTA models &nbsp; [:material-magnify-expand: Explore new YOLO11 models](models/yolo11.md){ .md-button }
<div class="grid cards" markdown>
- :material-clock-fast:{ .lg .middle } &nbsp; **Getting Started**
***
Install `ultralytics` with pip and get up and running in minutes to train a YOLO model
***
[:octicons-arrow-right-24: Quickstart](quickstart.md)
- :material-image:{ .lg .middle } &nbsp; **Predict**
***
Predict on new images, videos and streams with YOLO <br />
***
[:octicons-arrow-right-24: Learn more](modes/predict.md)
- :fontawesome-solid-brain:{ .lg .middle } &nbsp; **Train a Model**
***
Train a new YOLO model on your own custom dataset from scratch or load and train on a pretrained model
***
[:octicons-arrow-right-24: Learn more](modes/train.md)
- :material-magnify-expand:{ .lg .middle } &nbsp; **Explore Tasks**
***
Discover YOLO tasks like detect, segment, classify, pose, OBB and track <br />
***
[:octicons-arrow-right-24: Explore Tasks](tasks/index.md)
- :rocket:{ .lg .middle } &nbsp; **Explore YOLO11 NEW**
***
Discover Ultralytics' latest state-of-the-art YOLO11 models and their capabilities <br />
***
[:octicons-arrow-right-24: YOLO11 Models 🚀 NEW](models/yolo11.md)
- :material-scale-balance:{ .lg .middle } &nbsp; **Open Source, AGPL-3.0**
***
Ultralytics offers two licensing options for YOLO: AGPL-3.0 License and Enterprise License. Ultralytics is available on [GitHub](https://github.com/ultralytics/ultralytics)
***
[:octicons-arrow-right-24: License](https://www.ultralytics.com/license)
</div>
<p align="center">
<br>
@ -105,7 +163,7 @@ Ultralytics YOLO is the latest advancement in the acclaimed YOLO (You Only Look
Getting started with YOLO is quick and straightforward. You can install the Ultralytics package using [pip](https://pypi.org/project/ultralytics/) and get up and running in minutes. Here's a basic installation command:
!!! example
!!! example "Installation using pip"
=== "CLI"
@ -121,11 +179,11 @@ Training a custom YOLO model on your dataset involves a few detailed steps:
1. Prepare your annotated dataset.
2. Configure the training parameters in a YAML file.
3. Use the `yolo train` command to start training.
3. Use the `yolo TASK train` command to start training. (Each `TASK` has its own argument)
Here's example code:
Here's example code for the Object Detection Task:
!!! example
!!! example "Train Example for Object Detection Task"
=== "Python"
@ -143,7 +201,7 @@ Here's example code:
```bash
# Train a YOLO model from the command line
yolo train data=path/to/dataset.yaml epochs=100 imgsz=640
yolo detect train data=path/to/dataset.yaml epochs=100 imgsz=640
```
For a detailed walkthrough, check out our [Train a Model](modes/train.md) guide, which includes examples and tips for optimizing your training process.
@ -161,7 +219,7 @@ For more details, visit our [Licensing](https://www.ultralytics.com/license) pag
Ultralytics YOLO supports efficient and customizable multi-object tracking. To utilize tracking capabilities, you can use the `yolo track` command as shown below:
!!! example
!!! example "Example for Object Tracking on a Video"
=== "Python"

Loading…
Cancel
Save