|
|
|
@ -2,51 +2,51 @@ |
|
|
|
|
""" |
|
|
|
|
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit |
|
|
|
|
|
|
|
|
|
Format | `export.py --include` | Model |
|
|
|
|
Format | `format=argument` | Model |
|
|
|
|
--- | --- | --- |
|
|
|
|
PyTorch | - | yolov8n.pt |
|
|
|
|
TorchScript | `torchscript` | yolov8n.torchscript |
|
|
|
|
ONNX | `onnx` | yolov8n.onnx |
|
|
|
|
OpenVINO | `openvino` | yolov5s_openvino_model/ |
|
|
|
|
OpenVINO | `openvino` | yolov8n_openvino_model/ |
|
|
|
|
TensorRT | `engine` | yolov8n.engine |
|
|
|
|
CoreML | `coreml` | yolov8n.mlmodel |
|
|
|
|
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ |
|
|
|
|
TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/ |
|
|
|
|
TensorFlow GraphDef | `pb` | yolov8n.pb |
|
|
|
|
TensorFlow Lite | `tflite` | yolov8n.tflite |
|
|
|
|
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite |
|
|
|
|
TensorFlow.js | `tfjs` | yolov5s_web_model/ |
|
|
|
|
PaddlePaddle | `paddle` | yolov5s_paddle_model/ |
|
|
|
|
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite |
|
|
|
|
TensorFlow.js | `tfjs` | yolov8n_web_model/ |
|
|
|
|
PaddlePaddle | `paddle` | yolov8n_paddle_model/ |
|
|
|
|
|
|
|
|
|
Requirements: |
|
|
|
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU |
|
|
|
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU |
|
|
|
|
|
|
|
|
|
Usage: |
|
|
|
|
$ python export.py --weights yolov8n.pt --include torchscript onnx openvino engine coreml tflite ... |
|
|
|
|
Python: |
|
|
|
|
from ultralytics import YOLO |
|
|
|
|
model = YOLO.new('yolov8n.yaml') |
|
|
|
|
results = model.export(format='onnx') |
|
|
|
|
|
|
|
|
|
CLI: |
|
|
|
|
$ yolo mode=export model=yolov8n.pt format=onnx |
|
|
|
|
|
|
|
|
|
Inference: |
|
|
|
|
$ python detect.py --weights yolov8n.pt # PyTorch |
|
|
|
|
yolov8n.torchscript # TorchScript |
|
|
|
|
yolov8n.onnx # ONNX Runtime or OpenCV DNN with --dnn |
|
|
|
|
yolov5s_openvino_model # OpenVINO |
|
|
|
|
yolov8n_openvino_model # OpenVINO |
|
|
|
|
yolov8n.engine # TensorRT |
|
|
|
|
yolov8n.mlmodel # CoreML (macOS-only) |
|
|
|
|
yolov5s_saved_model # TensorFlow SavedModel |
|
|
|
|
yolov8n_saved_model # TensorFlow SavedModel |
|
|
|
|
yolov8n.pb # TensorFlow GraphDef |
|
|
|
|
yolov8n.tflite # TensorFlow Lite |
|
|
|
|
yolov5s_edgetpu.tflite # TensorFlow Edge TPU |
|
|
|
|
yolov5s_paddle_model # PaddlePaddle |
|
|
|
|
yolov8n_edgetpu.tflite # TensorFlow Edge TPU |
|
|
|
|
yolov8n_paddle_model # PaddlePaddle |
|
|
|
|
|
|
|
|
|
TensorFlow.js: |
|
|
|
|
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example |
|
|
|
|
$ npm install |
|
|
|
|
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model |
|
|
|
|
$ ln -s ../../yolov5/yolov8n_web_model public/yolov8n_web_model |
|
|
|
|
$ npm start |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from ultralytics import YOLO |
|
|
|
|
model = YOLO().new('yolov8n.yaml') |
|
|
|
|
results = model.export(format='onnx') |
|
|
|
|
""" |
|
|
|
|
import contextlib |
|
|
|
|
import json |
|
|
|
@ -59,15 +59,19 @@ import warnings |
|
|
|
|
from copy import deepcopy |
|
|
|
|
from pathlib import Path |
|
|
|
|
|
|
|
|
|
import hydra |
|
|
|
|
import numpy as np |
|
|
|
|
import pandas as pd |
|
|
|
|
import torch |
|
|
|
|
from torch.utils.mobile_optimizer import optimize_for_mobile |
|
|
|
|
|
|
|
|
|
from ultralytics.nn.modules import Detect, Segment |
|
|
|
|
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel |
|
|
|
|
from ultralytics.yolo.utils import LOGGER, ROOT, colorstr, get_default_args |
|
|
|
|
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version |
|
|
|
|
from ultralytics.yolo.utils.files import file_size, yaml_save |
|
|
|
|
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_weights |
|
|
|
|
from ultralytics.yolo.configs import get_config |
|
|
|
|
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages |
|
|
|
|
from ultralytics.yolo.data.utils import check_dataset |
|
|
|
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, colorstr, get_default_args |
|
|
|
|
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml |
|
|
|
|
from ultralytics.yolo.utils.files import file_size, increment_path, yaml_save |
|
|
|
|
from ultralytics.yolo.utils.ops import Profile |
|
|
|
|
from ultralytics.yolo.utils.torch_utils import select_device, smart_inference_mode |
|
|
|
|
|
|
|
|
@ -110,46 +114,166 @@ def try_export(inner_func): |
|
|
|
|
return outer_func |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export |
|
|
|
|
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')): |
|
|
|
|
class Exporter: |
|
|
|
|
|
|
|
|
|
def __init__(self, config=DEFAULT_CONFIG, overrides={}): |
|
|
|
|
self.args = get_config(config, overrides) |
|
|
|
|
project = self.args.project or f"runs/{self.args.task}" |
|
|
|
|
name = self.args.name or f"{self.args.mode}" |
|
|
|
|
self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok) |
|
|
|
|
self.save_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
|
self.imgsz = self.args.imgsz |
|
|
|
|
|
|
|
|
|
@smart_inference_mode() |
|
|
|
|
def __call__(self, model=None): |
|
|
|
|
t = time.time() |
|
|
|
|
format = self.args.format.lower() # to lowercase |
|
|
|
|
fmts = tuple(export_formats()['Argument'][1:]) # available export formats |
|
|
|
|
flags = [x == format for x in fmts] |
|
|
|
|
assert sum(flags), f'ERROR: Invalid format={format}, valid formats are {fmts}' |
|
|
|
|
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans |
|
|
|
|
|
|
|
|
|
# Load PyTorch model |
|
|
|
|
self.device = select_device(self.args.device) |
|
|
|
|
if self.args.half: |
|
|
|
|
assert self.device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0' |
|
|
|
|
assert not self.args.dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic' |
|
|
|
|
|
|
|
|
|
# Checks |
|
|
|
|
if isinstance(self.imgsz, int): |
|
|
|
|
self.imgsz = [self.imgsz] |
|
|
|
|
self.imgsz *= 2 if len(self.imgsz) == 1 else 1 # expand |
|
|
|
|
if self.args.optimize: |
|
|
|
|
assert self.device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu' |
|
|
|
|
|
|
|
|
|
# Input |
|
|
|
|
self.args.batch_size = 1 # TODO: resolve this issue, default 16 not fit for export |
|
|
|
|
gs = int(max(model.stride)) # grid size (max stride) |
|
|
|
|
imgsz = [check_imgsz(x, gs) for x in self.imgsz] # verify img_size are gs-multiples |
|
|
|
|
im = torch.zeros(self.args.batch_size, 3, *imgsz).to(self.device) # image size(1,3,320,192) BCHW iDetection |
|
|
|
|
file = Path(Path(model.yaml['yaml_file']).name) |
|
|
|
|
|
|
|
|
|
# Update model |
|
|
|
|
model = deepcopy(model) |
|
|
|
|
for p in model.parameters(): |
|
|
|
|
p.requires_grad = False |
|
|
|
|
model.eval() |
|
|
|
|
model = model.fuse() |
|
|
|
|
for k, m in model.named_modules(): |
|
|
|
|
if isinstance(m, (Detect, Segment)): |
|
|
|
|
m.dynamic = self.args.dynamic |
|
|
|
|
m.export = True |
|
|
|
|
|
|
|
|
|
y = None |
|
|
|
|
for _ in range(2): |
|
|
|
|
y = model(im) # dry runs |
|
|
|
|
if self.args.half and not coreml: |
|
|
|
|
im, model = im.half(), model.half() # to FP16 |
|
|
|
|
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape |
|
|
|
|
LOGGER.info( |
|
|
|
|
f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)") |
|
|
|
|
|
|
|
|
|
# Warnings |
|
|
|
|
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) # suppress TracerWarning |
|
|
|
|
warnings.filterwarnings('ignore', category=UserWarning) # suppress shape prim::Constant missing ONNX warning |
|
|
|
|
warnings.filterwarnings('ignore', category=DeprecationWarning) # suppress CoreML np.bool deprecation warning |
|
|
|
|
|
|
|
|
|
# Assign |
|
|
|
|
self.im = im |
|
|
|
|
self.model = model |
|
|
|
|
self.file = file |
|
|
|
|
self.metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata |
|
|
|
|
|
|
|
|
|
# Exports |
|
|
|
|
f = [''] * len(fmts) # exported filenames |
|
|
|
|
if jit: # TorchScript |
|
|
|
|
f[0], _ = self._export_torchscript() |
|
|
|
|
if engine: # TensorRT required before ONNX |
|
|
|
|
f[1], _ = self._export_engine() |
|
|
|
|
if onnx or xml: # OpenVINO requires ONNX |
|
|
|
|
f[2], _ = self._export_onnx() |
|
|
|
|
if xml: # OpenVINO |
|
|
|
|
f[3], _ = self._export_openvino() |
|
|
|
|
if coreml: # CoreML |
|
|
|
|
f[4], _ = self._export_coreml() |
|
|
|
|
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats |
|
|
|
|
assert not isinstance(model, ClassificationModel), 'ClassificationModel TF exports not yet supported.' |
|
|
|
|
nms = False |
|
|
|
|
f[5], s_model = self._export_saved_model(nms=nms or self.args.agnostic_nms or tfjs, |
|
|
|
|
agnostic_nms=self.args.agnostic_nms or tfjs) |
|
|
|
|
if pb or tfjs: # pb prerequisite to tfjs |
|
|
|
|
f[6], _ = self._export_pb(s_model,) |
|
|
|
|
if tflite or edgetpu: |
|
|
|
|
f[7], _ = self._export_tflite(s_model, |
|
|
|
|
int8=self.args.int8 or edgetpu, |
|
|
|
|
data=self.args.data, |
|
|
|
|
nms=nms, |
|
|
|
|
agnostic_nms=self.args.agnostic_nms) |
|
|
|
|
if edgetpu: |
|
|
|
|
f[8], _ = self._export_edgetpu() |
|
|
|
|
self._add_tflite_metadata(f[8] or f[7], num_outputs=len(s_model.outputs)) |
|
|
|
|
if tfjs: |
|
|
|
|
f[9], _ = self._export_tfjs() |
|
|
|
|
if paddle: # PaddlePaddle |
|
|
|
|
f[10], _ = self._export_paddle() |
|
|
|
|
|
|
|
|
|
# Finish |
|
|
|
|
f = [str(x) for x in f if x] # filter out '' and None |
|
|
|
|
if any(f): |
|
|
|
|
cls, det, seg = (isinstance(model, x) |
|
|
|
|
for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type |
|
|
|
|
det &= not seg # segmentation models inherit from SegmentationModel(DetectionModel) |
|
|
|
|
s = "-WARNING ⚠️ not yet supported for YOLOv8 exported models" |
|
|
|
|
task = 'detect' if det else 'segment' if seg else 'classify' if cls else '' |
|
|
|
|
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)' |
|
|
|
|
f"\nResults saved to {colorstr('bold', file.parent.resolve())}" |
|
|
|
|
f"\nPredict: yolo task={task} mode=predict model={f[-1]} {s}" |
|
|
|
|
f"\nValidate: yolo task={task} mode=val model={f[-1]} {s}" |
|
|
|
|
f"\nVisualize: https://netron.app") |
|
|
|
|
return f # return list of exported files/dirs |
|
|
|
|
|
|
|
|
|
@try_export |
|
|
|
|
def _export_torchscript(self, prefix=colorstr('TorchScript:')): |
|
|
|
|
# YOLOv5 TorchScript model export |
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...') |
|
|
|
|
f = file.with_suffix('.torchscript') |
|
|
|
|
f = self.file.with_suffix('.torchscript') |
|
|
|
|
|
|
|
|
|
ts = torch.jit.trace(model, im, strict=False) |
|
|
|
|
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names} |
|
|
|
|
ts = torch.jit.trace(self.model, self.im, strict=False) |
|
|
|
|
d = {"shape": self.im.shape, "stride": int(max(self.model.stride)), "names": self.model.names} |
|
|
|
|
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap() |
|
|
|
|
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html |
|
|
|
|
if self.args.optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html |
|
|
|
|
LOGGER.info(f'{prefix} optimizing for mobile...') |
|
|
|
|
from torch.utils.mobile_optimizer import optimize_for_mobile |
|
|
|
|
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files) |
|
|
|
|
else: |
|
|
|
|
ts.save(str(f), _extra_files=extra_files) |
|
|
|
|
return f, None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export |
|
|
|
|
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')): |
|
|
|
|
@try_export |
|
|
|
|
def _export_onnx(self, prefix=colorstr('ONNX:')): |
|
|
|
|
# YOLOv5 ONNX export |
|
|
|
|
check_requirements('onnx>=1.12.0') |
|
|
|
|
import onnx # noqa |
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...') |
|
|
|
|
f = file.with_suffix('.onnx') |
|
|
|
|
f = str(self.file.with_suffix('.onnx')) |
|
|
|
|
|
|
|
|
|
output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0'] |
|
|
|
|
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0'] |
|
|
|
|
dynamic = self.args.dynamic |
|
|
|
|
if dynamic: |
|
|
|
|
dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640) |
|
|
|
|
if isinstance(model, SegmentationModel): |
|
|
|
|
if isinstance(self.model, SegmentationModel): |
|
|
|
|
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85) |
|
|
|
|
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160) |
|
|
|
|
elif isinstance(model, DetectionModel): |
|
|
|
|
elif isinstance(self.model, DetectionModel): |
|
|
|
|
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85) |
|
|
|
|
|
|
|
|
|
torch.onnx.export( |
|
|
|
|
model.cpu() if dynamic else model, # --dynamic only compatible with cpu |
|
|
|
|
im.cpu() if dynamic else im, |
|
|
|
|
self.model.cpu() if dynamic else self.model, # --dynamic only compatible with cpu |
|
|
|
|
self.im.cpu() if dynamic else self.im, |
|
|
|
|
f, |
|
|
|
|
verbose=False, |
|
|
|
|
opset_version=opset, |
|
|
|
|
opset_version=self.args.opset, |
|
|
|
|
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False |
|
|
|
|
input_names=['images'], |
|
|
|
|
output_names=output_names, |
|
|
|
@ -160,18 +284,18 @@ def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX |
|
|
|
|
onnx.checker.check_model(model_onnx) # check onnx model |
|
|
|
|
|
|
|
|
|
# Metadata |
|
|
|
|
d = {'stride': int(max(model.stride)), 'names': model.names} |
|
|
|
|
d = {'stride': int(max(self.model.stride)), 'names': self.model.names} |
|
|
|
|
for k, v in d.items(): |
|
|
|
|
meta = model_onnx.metadata_props.add() |
|
|
|
|
meta.key, meta.value = k, str(v) |
|
|
|
|
onnx.save(model_onnx, f) |
|
|
|
|
|
|
|
|
|
# Simplify |
|
|
|
|
if simplify: |
|
|
|
|
if self.args.simplify: |
|
|
|
|
try: |
|
|
|
|
cuda = torch.cuda.is_available() |
|
|
|
|
check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1')) |
|
|
|
|
import onnxsim |
|
|
|
|
import onnxsim # noqa |
|
|
|
|
|
|
|
|
|
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') |
|
|
|
|
model_onnx, check = onnxsim.simplify(model_onnx) |
|
|
|
@ -181,82 +305,73 @@ def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX |
|
|
|
|
LOGGER.info(f'{prefix} simplifier failure: {e}') |
|
|
|
|
return f, model_onnx |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export |
|
|
|
|
def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')): |
|
|
|
|
@try_export |
|
|
|
|
def _export_openvino(self, prefix=colorstr('OpenVINO:')): |
|
|
|
|
# YOLOv5 OpenVINO export |
|
|
|
|
check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/ |
|
|
|
|
import openvino.inference_engine as ie # noqa |
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...') |
|
|
|
|
f = str(file).replace('.pt', f'_openvino_model{os.sep}') |
|
|
|
|
f = str(self.file).replace(self.file.suffix, f'_openvino_model{os.sep}') |
|
|
|
|
f_onnx = self.file.with_suffix('.onnx') |
|
|
|
|
|
|
|
|
|
cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}" |
|
|
|
|
cmd = f"mo --input_model {f_onnx} --output_dir {f} --data_type {'FP16' if self.args.half else 'FP32'}" |
|
|
|
|
subprocess.run(cmd.split(), check=True, env=os.environ) # export |
|
|
|
|
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml |
|
|
|
|
yaml_save(Path(f) / self.file.with_suffix('.yaml').name, self.metadata) # add metadata.yaml |
|
|
|
|
return f, None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export |
|
|
|
|
def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')): |
|
|
|
|
@try_export |
|
|
|
|
def _export_paddle(self, prefix=colorstr('PaddlePaddle:')): |
|
|
|
|
# YOLOv5 Paddle export |
|
|
|
|
check_requirements(('paddlepaddle', 'x2paddle')) |
|
|
|
|
import x2paddle # noqa |
|
|
|
|
from x2paddle.convert import pytorch2paddle # noqa |
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...') |
|
|
|
|
f = str(file).replace('.pt', f'_paddle_model{os.sep}') |
|
|
|
|
f = str(self.file).replace(self.file.suffix, f'_paddle_model{os.sep}') |
|
|
|
|
|
|
|
|
|
pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) # export |
|
|
|
|
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml |
|
|
|
|
pytorch2paddle(module=self.model, save_dir=f, jit_type='trace', input_examples=[self.im]) # export |
|
|
|
|
yaml_save(Path(f) / self.file.with_suffix('.yaml').name, self.metadata) # add metadata.yaml |
|
|
|
|
return f, None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export |
|
|
|
|
def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')): |
|
|
|
|
@try_export |
|
|
|
|
def _export_coreml(self, prefix=colorstr('CoreML:')): |
|
|
|
|
# YOLOv5 CoreML export |
|
|
|
|
check_requirements('coremltools') |
|
|
|
|
import coremltools as ct # noqa |
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...') |
|
|
|
|
f = file.with_suffix('.mlmodel') |
|
|
|
|
f = self.file.with_suffix('.mlmodel') |
|
|
|
|
|
|
|
|
|
ts = torch.jit.trace(model, im, strict=False) # TorchScript model |
|
|
|
|
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])]) |
|
|
|
|
bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None) |
|
|
|
|
ts = torch.jit.trace(self.model, self.im, strict=False) # TorchScript model |
|
|
|
|
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=self.im.shape, scale=1 / 255, bias=[0, 0, 0])]) |
|
|
|
|
bits, mode = (8, 'kmeans_lut') if self.args.int8 else (16, 'linear') if self.args.half else (32, None) |
|
|
|
|
if bits < 32: |
|
|
|
|
if MACOS: # quantization only supported on macOS |
|
|
|
|
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode) |
|
|
|
|
else: |
|
|
|
|
LOGGER.info(f'{prefix} quantization only supported on macOS, skipping...') |
|
|
|
|
ct_model.save(f) |
|
|
|
|
ct_model.save(str(f)) |
|
|
|
|
return f, ct_model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export |
|
|
|
|
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')): |
|
|
|
|
@try_export |
|
|
|
|
def _export_engine(self, workspace=4, verbose=False, prefix=colorstr('TensorRT:')): |
|
|
|
|
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt |
|
|
|
|
assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`' |
|
|
|
|
assert self.im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `device==0`' |
|
|
|
|
try: |
|
|
|
|
import tensorrt as trt |
|
|
|
|
except Exception: |
|
|
|
|
import tensorrt as trt # noqa |
|
|
|
|
except ImportError: |
|
|
|
|
if platform.system() == 'Linux': |
|
|
|
|
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com') |
|
|
|
|
import tensorrt as trt |
|
|
|
|
|
|
|
|
|
if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012 |
|
|
|
|
grid = model.model[-1].anchor_grid |
|
|
|
|
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid] |
|
|
|
|
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12 |
|
|
|
|
model.model[-1].anchor_grid = grid |
|
|
|
|
else: # TensorRT >= 8 |
|
|
|
|
check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0 |
|
|
|
|
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12 |
|
|
|
|
onnx = file.with_suffix('.onnx') |
|
|
|
|
import tensorrt as trt # noqa |
|
|
|
|
|
|
|
|
|
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=8.0.0 |
|
|
|
|
self._export_onnx() |
|
|
|
|
onnx = self.file.with_suffix('.onnx') |
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...') |
|
|
|
|
assert onnx.exists(), f'failed to export ONNX file: {onnx}' |
|
|
|
|
f = file.with_suffix('.engine') # TensorRT engine file |
|
|
|
|
f = self.file.with_suffix('.engine') # TensorRT engine file |
|
|
|
|
logger = trt.Logger(trt.Logger.INFO) |
|
|
|
|
if verbose: |
|
|
|
|
logger.min_severity = trt.Logger.Severity.VERBOSE |
|
|
|
@ -279,57 +394,55 @@ def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose |
|
|
|
|
for out in outputs: |
|
|
|
|
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}') |
|
|
|
|
|
|
|
|
|
if dynamic: |
|
|
|
|
if im.shape[0] <= 1: |
|
|
|
|
if self.args.dynamic: |
|
|
|
|
shape = self.im.shape |
|
|
|
|
if shape[0] <= 1: |
|
|
|
|
LOGGER.warning(f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument") |
|
|
|
|
profile = builder.create_optimization_profile() |
|
|
|
|
for inp in inputs: |
|
|
|
|
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape) |
|
|
|
|
profile.set_shape(inp.name, (1, *shape[1:]), (max(1, shape[0] // 2), *shape[1:]), shape) |
|
|
|
|
config.add_optimization_profile(profile) |
|
|
|
|
|
|
|
|
|
LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}') |
|
|
|
|
if builder.platform_has_fast_fp16 and half: |
|
|
|
|
LOGGER.info( |
|
|
|
|
f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and self.args.half else 32} engine as {f}') |
|
|
|
|
if builder.platform_has_fast_fp16 and self.args.half: |
|
|
|
|
config.set_flag(trt.BuilderFlag.FP16) |
|
|
|
|
with builder.build_engine(network, config) as engine, open(f, 'wb') as t: |
|
|
|
|
t.write(engine.serialize()) |
|
|
|
|
return f, None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export |
|
|
|
|
def export_saved_model(model, |
|
|
|
|
im, |
|
|
|
|
file, |
|
|
|
|
dynamic, |
|
|
|
|
tf_nms=False, |
|
|
|
|
@try_export |
|
|
|
|
def _export_saved_model(self, |
|
|
|
|
nms=False, |
|
|
|
|
agnostic_nms=False, |
|
|
|
|
topk_per_class=100, |
|
|
|
|
topk_all=100, |
|
|
|
|
iou_thres=0.45, |
|
|
|
|
conf_thres=0.25, |
|
|
|
|
keras=False, |
|
|
|
|
prefix=colorstr('TensorFlow SavedModel:')): |
|
|
|
|
# YOLOv5 TensorFlow SavedModel export |
|
|
|
|
try: |
|
|
|
|
import tensorflow as tf |
|
|
|
|
except Exception: |
|
|
|
|
import tensorflow as tf # noqa |
|
|
|
|
except ImportError: |
|
|
|
|
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}") |
|
|
|
|
import tensorflow as tf |
|
|
|
|
from models.tf import TFModel |
|
|
|
|
import tensorflow as tf # noqa |
|
|
|
|
# from models.tf import TFModel |
|
|
|
|
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa |
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') |
|
|
|
|
f = str(file).replace('.pt', '_saved_model') |
|
|
|
|
batch_size, ch, *imgsz = list(im.shape) # BCHW |
|
|
|
|
f = str(self.file).replace(self.file.suffix, '_saved_model') |
|
|
|
|
batch_size, ch, *imgsz = list(self.im.shape) # BCHW |
|
|
|
|
|
|
|
|
|
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) |
|
|
|
|
tf_models = None # TODO: no TF modules available |
|
|
|
|
tf_model = tf_models.TFModel(cfg=self.model.yaml, model=self.model.cpu(), nc=self.model.nc, imgsz=imgsz) |
|
|
|
|
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow |
|
|
|
|
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) |
|
|
|
|
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size) |
|
|
|
|
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) |
|
|
|
|
_ = tf_model.predict(im, nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) |
|
|
|
|
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if self.args.dynamic else batch_size) |
|
|
|
|
outputs = tf_model.predict(inputs, nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) |
|
|
|
|
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs) |
|
|
|
|
keras_model.trainable = False |
|
|
|
|
keras_model.summary() |
|
|
|
|
if keras: |
|
|
|
|
if self.args.keras: |
|
|
|
|
keras_model.save(f, save_format='tf') |
|
|
|
|
else: |
|
|
|
|
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype) |
|
|
|
@ -337,17 +450,16 @@ def export_saved_model(model, |
|
|
|
|
m = m.get_concrete_function(spec) |
|
|
|
|
frozen_func = convert_variables_to_constants_v2(m) |
|
|
|
|
tfm = tf.Module() |
|
|
|
|
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec]) |
|
|
|
|
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if nms else frozen_func(x), [spec]) |
|
|
|
|
tfm.__call__(im) |
|
|
|
|
tf.saved_model.save(tfm, |
|
|
|
|
f, |
|
|
|
|
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version( |
|
|
|
|
tf.__version__, '2.6') else tf.saved_model.SaveOptions()) |
|
|
|
|
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) |
|
|
|
|
if check_version(tf.__version__, '2.6') else tf.saved_model.SaveOptions()) |
|
|
|
|
return f, keras_model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export |
|
|
|
|
def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')): |
|
|
|
|
@try_export |
|
|
|
|
def _export_pb(self, keras_model, file, prefix=colorstr('TensorFlow GraphDef:')): |
|
|
|
|
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow |
|
|
|
|
import tensorflow as tf # noqa |
|
|
|
|
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa |
|
|
|
@ -362,30 +474,39 @@ def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')): |
|
|
|
|
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) |
|
|
|
|
return f, None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export |
|
|
|
|
def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')): |
|
|
|
|
@try_export |
|
|
|
|
def _export_tflite(self, keras_model, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')): |
|
|
|
|
# YOLOv5 TensorFlow Lite export |
|
|
|
|
import tensorflow as tf # noqa |
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') |
|
|
|
|
batch_size, ch, *imgsz = list(im.shape) # BCHW |
|
|
|
|
f = str(file).replace('.pt', '-fp16.tflite') |
|
|
|
|
batch_size, ch, *imgsz = list(self.im.shape) # BCHW |
|
|
|
|
f = str(self.file).replace(self.file.suffix, '-fp16.tflite') |
|
|
|
|
|
|
|
|
|
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) |
|
|
|
|
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] |
|
|
|
|
converter.target_spec.supported_types = [tf.float16] |
|
|
|
|
converter.optimizations = [tf.lite.Optimize.DEFAULT] |
|
|
|
|
if int8: |
|
|
|
|
# from models.tf import representative_dataset_gen |
|
|
|
|
# dataset = LoadImages(check_dataset(check_yaml(data))['train'], imgsz=imgsz, auto=False) |
|
|
|
|
# converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100) |
|
|
|
|
|
|
|
|
|
def representative_dataset_gen(dataset, n_images=100): |
|
|
|
|
# Dataset generator for use with converter.representative_dataset, returns a generator of np arrays |
|
|
|
|
for n, (path, img, im0s, vid_cap, string) in enumerate(dataset): |
|
|
|
|
im = np.transpose(img, [1, 2, 0]) |
|
|
|
|
im = np.expand_dims(im, axis=0).astype(np.float32) |
|
|
|
|
im /= 255 |
|
|
|
|
yield [im] |
|
|
|
|
if n >= n_images: |
|
|
|
|
break |
|
|
|
|
|
|
|
|
|
dataset = LoadImages(check_dataset(check_yaml(data))['train'], imgsz=imgsz, auto=False) |
|
|
|
|
converter.representative_dataset = lambda: representative_dataset_gen(dataset, n_images=100) |
|
|
|
|
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] |
|
|
|
|
converter.target_spec.supported_types = [] |
|
|
|
|
converter.inference_input_type = tf.uint8 # or tf.int8 |
|
|
|
|
converter.inference_output_type = tf.uint8 # or tf.int8 |
|
|
|
|
converter.experimental_new_quantizer = True |
|
|
|
|
f = str(file).replace('.pt', '-int8.tflite') |
|
|
|
|
f = str(self.file).replace(self.file.suffix, '-int8.tflite') |
|
|
|
|
if nms or agnostic_nms: |
|
|
|
|
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS) |
|
|
|
|
|
|
|
|
@ -393,9 +514,8 @@ def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=c |
|
|
|
|
open(f, "wb").write(tflite_model) |
|
|
|
|
return f, None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export |
|
|
|
|
def export_edgetpu(file, prefix=colorstr('Edge TPU:')): |
|
|
|
|
@try_export |
|
|
|
|
def _export_edgetpu(self, prefix=colorstr('Edge TPU:')): |
|
|
|
|
# YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/ |
|
|
|
|
cmd = 'edgetpu_compiler --version' |
|
|
|
|
help_url = 'https://coral.ai/docs/edgetpu/compiler/' |
|
|
|
@ -411,30 +531,28 @@ def export_edgetpu(file, prefix=colorstr('Edge TPU:')): |
|
|
|
|
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1] |
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...') |
|
|
|
|
f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model |
|
|
|
|
f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model |
|
|
|
|
f = str(self.file).replace(self.file.suffix, '-int8_edgetpu.tflite') # Edge TPU model |
|
|
|
|
f_tfl = str(self.file).replace(self.file.suffix, '-int8.tflite') # TFLite model |
|
|
|
|
|
|
|
|
|
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}" |
|
|
|
|
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {self.file.parent} {f_tfl}" |
|
|
|
|
subprocess.run(cmd.split(), check=True) |
|
|
|
|
return f, None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@try_export |
|
|
|
|
def export_tfjs(file, prefix=colorstr('TensorFlow.js:')): |
|
|
|
|
@try_export |
|
|
|
|
def _export_tfjs(self, prefix=colorstr('TensorFlow.js:')): |
|
|
|
|
# YOLOv5 TensorFlow.js export |
|
|
|
|
check_requirements('tensorflowjs') |
|
|
|
|
import tensorflowjs as tfjs # noqa |
|
|
|
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...') |
|
|
|
|
f = str(file).replace('.pt', '_web_model') # js dir |
|
|
|
|
f_pb = file.with_suffix('.pb') # *.pb path |
|
|
|
|
f_json = f'{f}/model.json' # *.json path |
|
|
|
|
f = str(self.file).replace(self.file.suffix, '_web_model') # js dir |
|
|
|
|
f_pb = self.file.with_suffix('.pb') # *.pb path |
|
|
|
|
f_json = Path(f) / 'model.json' # *.json path |
|
|
|
|
|
|
|
|
|
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \ |
|
|
|
|
f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}' |
|
|
|
|
subprocess.run(cmd.split()) |
|
|
|
|
|
|
|
|
|
json = Path(f_json).read_text() |
|
|
|
|
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order |
|
|
|
|
subst = re.sub( |
|
|
|
|
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' |
|
|
|
@ -443,12 +561,11 @@ def export_tfjs(file, prefix=colorstr('TensorFlow.js:')): |
|
|
|
|
r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, ' |
|
|
|
|
r'"Identity_1": {"name": "Identity_1"}, ' |
|
|
|
|
r'"Identity_2": {"name": "Identity_2"}, ' |
|
|
|
|
r'"Identity_3": {"name": "Identity_3"}}}', json) |
|
|
|
|
r'"Identity_3": {"name": "Identity_3"}}}', f_json.read_text()) |
|
|
|
|
j.write(subst) |
|
|
|
|
return f, None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def add_tflite_metadata(file, metadata, num_outputs): |
|
|
|
|
def _add_tflite_metadata(self, file, num_outputs): |
|
|
|
|
# Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata |
|
|
|
|
with contextlib.suppress(ImportError): |
|
|
|
|
# check_requirements('tflite_support') |
|
|
|
@ -458,7 +575,7 @@ def add_tflite_metadata(file, metadata, num_outputs): |
|
|
|
|
|
|
|
|
|
tmp_file = Path('/tmp/meta.txt') |
|
|
|
|
with open(tmp_file, 'w') as meta_f: |
|
|
|
|
meta_f.write(str(metadata)) |
|
|
|
|
meta_f.write(str(self.metadata)) |
|
|
|
|
|
|
|
|
|
model_meta = _metadata_fb.ModelMetadataT() |
|
|
|
|
label_file = _metadata_fb.AssociatedFileT() |
|
|
|
@ -481,128 +598,26 @@ def add_tflite_metadata(file, metadata, num_outputs): |
|
|
|
|
tmp_file.unlink() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@smart_inference_mode() |
|
|
|
|
def export_model( |
|
|
|
|
model, # model |
|
|
|
|
file=ROOT / 'yolov8n.pt', |
|
|
|
|
data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path' |
|
|
|
|
imgsz=(640, 640), # image (height, width) |
|
|
|
|
batch_size=1, # batch size |
|
|
|
|
device=torch.device('cpu'), # cuda device, i.e. 0 or 0,1,2,3 or cpu |
|
|
|
|
format='onnx', # export format |
|
|
|
|
half=False, # FP16 half-precision export |
|
|
|
|
keras=False, # use Keras |
|
|
|
|
optimize=False, # TorchScript: optimize for mobile |
|
|
|
|
int8=False, # CoreML/TF INT8 quantization |
|
|
|
|
dynamic=False, # ONNX/TF/TensorRT: dynamic axes |
|
|
|
|
simplify=False, # ONNX: simplify model |
|
|
|
|
opset=17, # ONNX: opset version |
|
|
|
|
verbose=False, # TensorRT: verbose log |
|
|
|
|
workspace=4, # TensorRT: workspace size (GB) |
|
|
|
|
nms=False, # TF: add NMS to model |
|
|
|
|
agnostic_nms=False, # TF: add agnostic NMS to model |
|
|
|
|
topk_per_class=100, # TF.js NMS: topk per class to keep |
|
|
|
|
topk_all=100, # TF.js NMS: topk for all classes to keep |
|
|
|
|
iou_thres=0.45, # TF.js NMS: IoU threshold |
|
|
|
|
conf_thres=0.25, # TF.js NMS: confidence threshold |
|
|
|
|
): |
|
|
|
|
t = time.time() |
|
|
|
|
format = format.lower() # to lowercase |
|
|
|
|
fmts = tuple(export_formats()['Argument'][1:]) # available export formats |
|
|
|
|
flags = [x == format for x in fmts] |
|
|
|
|
assert sum(flags), f'ERROR: Invalid format={format}, valid formats are {fmts}' |
|
|
|
|
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans |
|
|
|
|
|
|
|
|
|
# Load PyTorch model |
|
|
|
|
device = select_device(device) |
|
|
|
|
if half: |
|
|
|
|
assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0' |
|
|
|
|
assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both' |
|
|
|
|
model = deepcopy(model).fuse() # load FP32 model |
|
|
|
|
|
|
|
|
|
# Checks |
|
|
|
|
if isinstance(imgsz, int): |
|
|
|
|
imgsz = [imgsz] |
|
|
|
|
imgsz *= 2 if len(imgsz) == 1 else 1 # expand |
|
|
|
|
if optimize: |
|
|
|
|
assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu' |
|
|
|
|
|
|
|
|
|
# Input |
|
|
|
|
gs = int(max(model.stride)) # grid size (max stride) |
|
|
|
|
imgsz = [check_imgsz(x, gs) for x in imgsz] # verify img_size are gs-multiples |
|
|
|
|
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection |
|
|
|
|
|
|
|
|
|
# Update model |
|
|
|
|
model.eval() |
|
|
|
|
for k, m in model.named_modules(): |
|
|
|
|
if isinstance(m, (Detect, Segment)): |
|
|
|
|
m.dynamic = dynamic |
|
|
|
|
m.export = True |
|
|
|
|
|
|
|
|
|
for _ in range(2): |
|
|
|
|
y = model(im) # dry runs |
|
|
|
|
if half and not coreml: |
|
|
|
|
im, model = im.half(), model.half() # to FP16 |
|
|
|
|
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape |
|
|
|
|
metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata |
|
|
|
|
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)") |
|
|
|
|
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name) |
|
|
|
|
def export(cfg): |
|
|
|
|
cfg.model = cfg.model or "yolov8n.yaml" |
|
|
|
|
cfg.format = cfg.format or "torchscript" |
|
|
|
|
exporter = Exporter(cfg) |
|
|
|
|
|
|
|
|
|
# Warnings |
|
|
|
|
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) # suppress TracerWarning |
|
|
|
|
warnings.filterwarnings('ignore', category=UserWarning) # suppress shape prim::Constant type missing ONNX warning |
|
|
|
|
warnings.filterwarnings('ignore', category=DeprecationWarning) # suppress CoreML np.bool deprecation warning |
|
|
|
|
model = None |
|
|
|
|
if isinstance(cfg.model, (str, Path)): |
|
|
|
|
if Path(cfg.model).suffix == '.yaml': |
|
|
|
|
model = DetectionModel(cfg.model) |
|
|
|
|
elif Path(cfg.model).suffix == '.pt': |
|
|
|
|
model = attempt_load_weights(cfg.model) |
|
|
|
|
else: |
|
|
|
|
TypeError(f'Unsupported model type {cfg.model}') |
|
|
|
|
exporter(model=model) |
|
|
|
|
|
|
|
|
|
# Exports |
|
|
|
|
f = [''] * len(fmts) # exported filenames |
|
|
|
|
if jit: # TorchScript |
|
|
|
|
f[0], _ = export_torchscript(model, im, file, optimize) |
|
|
|
|
if engine: # TensorRT required before ONNX |
|
|
|
|
f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose) |
|
|
|
|
if onnx or xml: # OpenVINO requires ONNX |
|
|
|
|
f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify) |
|
|
|
|
if xml: # OpenVINO |
|
|
|
|
f[3], _ = export_openvino(file, metadata, half) |
|
|
|
|
if coreml: # CoreML |
|
|
|
|
f[4], _ = export_coreml(model, im, file, int8, half) |
|
|
|
|
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats |
|
|
|
|
assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.' |
|
|
|
|
assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.' |
|
|
|
|
f[5], s_model = export_saved_model(model.cpu(), |
|
|
|
|
im, |
|
|
|
|
file, |
|
|
|
|
dynamic, |
|
|
|
|
tf_nms=nms or agnostic_nms or tfjs, |
|
|
|
|
agnostic_nms=agnostic_nms or tfjs, |
|
|
|
|
topk_per_class=topk_per_class, |
|
|
|
|
topk_all=topk_all, |
|
|
|
|
iou_thres=iou_thres, |
|
|
|
|
conf_thres=conf_thres, |
|
|
|
|
keras=keras) |
|
|
|
|
if pb or tfjs: # pb prerequisite to tfjs |
|
|
|
|
f[6], _ = export_pb(s_model, file) |
|
|
|
|
if tflite or edgetpu: |
|
|
|
|
f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms) |
|
|
|
|
if edgetpu: |
|
|
|
|
f[8], _ = export_edgetpu(file) |
|
|
|
|
add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs)) |
|
|
|
|
if tfjs: |
|
|
|
|
f[9], _ = export_tfjs(file) |
|
|
|
|
if paddle: # PaddlePaddle |
|
|
|
|
f[10], _ = export_paddle(model, im, file, metadata) |
|
|
|
|
|
|
|
|
|
# Finish |
|
|
|
|
f = [str(x) for x in f if x] # filter out '' and None |
|
|
|
|
if any(f): |
|
|
|
|
cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type |
|
|
|
|
det &= not seg # segmentation models inherit from SegmentationModel(DetectionModel) |
|
|
|
|
dir = Path('segment' if seg else 'classify' if cls else '') |
|
|
|
|
h = '--half' if half else '' # --half FP16 inference arg |
|
|
|
|
s = "# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference" if cls else \ |
|
|
|
|
"# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference" if seg else '' |
|
|
|
|
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)' |
|
|
|
|
f"\nResults saved to {colorstr('bold', file.parent.resolve())}" |
|
|
|
|
f"\nDetect: python {dir / 'predict.py'} --weights {f[-1]} {h}" |
|
|
|
|
f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}" |
|
|
|
|
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}" |
|
|
|
|
f"\nVisualize: https://netron.app") |
|
|
|
|
return f # return list of exported files/dirs |
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
""" |
|
|
|
|
CLI: |
|
|
|
|
yolo mode=export model=yolov8n.yaml format=onnx |
|
|
|
|
""" |
|
|
|
|
export() |
|
|
|
|