Minor fix in docs for `python` admonition and code blocks (#16646)

pull/16654/head^2
Jan Knobloch 5 months ago committed by GitHub
parent 7d6528a41a
commit 05fd3a3e73
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 6
      docs/en/guides/isolating-segmentation-objects.md
  2. 2
      docs/en/hub/datasets.md
  3. 6
      docs/en/integrations/tensorrt.md
  4. 32
      docs/en/usage/python.md

@ -141,7 +141,7 @@ After performing the [Segment Task](../tasks/segment.md), it's sometimes desirab
=== "Black Background Pixels"
```py
```python
# Create 3-channel mask
mask3ch = cv2.cvtColor(b_mask, cv2.COLOR_GRAY2BGR)
@ -192,7 +192,7 @@ After performing the [Segment Task](../tasks/segment.md), it's sometimes desirab
=== "Transparent Background Pixels"
```py
```python
# Isolate object with transparent background (when saved as PNG)
isolated = np.dstack([img, b_mask])
```
@ -248,7 +248,7 @@ After performing the [Segment Task](../tasks/segment.md), it's sometimes desirab
??? example "Example Final Step"
```py
```python
# Save isolated object to file
_ = cv2.imwrite(f"{img_name}_{label}-{ci}.png", iso_crop)
```

@ -48,7 +48,7 @@ The dataset YAML is the same standard YOLOv5 and YOLOv8 YAML format.
After zipping your dataset, you should [validate it](https://docs.ultralytics.com/reference/hub/__init__/#ultralytics.hub.check_dataset) before uploading it to [Ultralytics HUB](https://www.ultralytics.com/hub). [Ultralytics HUB](https://www.ultralytics.com/hub) conducts the dataset validation check post-upload, so by ensuring your dataset is correctly formatted and error-free ahead of time, you can forestall any setbacks due to dataset rejection.
```py
```python
from ultralytics.hub import check_dataset
check_dataset("path/to/dataset.zip", task="detect")

@ -380,7 +380,7 @@ Expand sections below for information on how these models were exported and test
See [export mode](../modes/export.md) for details regarding export configuration arguments.
```py
```python
from ultralytics import YOLO
model = YOLO("yolov8n.pt")
@ -401,7 +401,7 @@ Expand sections below for information on how these models were exported and test
See [predict mode](../modes/predict.md) for additional information.
```py
```python
import cv2
from ultralytics import YOLO
@ -421,7 +421,7 @@ Expand sections below for information on how these models were exported and test
See [`val` mode](../modes/val.md) to learn more about validation configuration arguments.
```py
```python
from ultralytics import YOLO
model = YOLO("yolov8n.engine")

@ -306,26 +306,26 @@ Explorer API can be used to explore datasets with advanced semantic, vector-simi
!!! tip "Detection Trainer Example"
```python
from ultralytics.models.yolo import DetectionPredictor, DetectionTrainer, DetectionValidator
```python
from ultralytics.models.yolo import DetectionPredictor, DetectionTrainer, DetectionValidator
# trainer
trainer = DetectionTrainer(overrides={})
trainer.train()
trained_model = trainer.best
# trainer
trainer = DetectionTrainer(overrides={})
trainer.train()
trained_model = trainer.best
# Validator
val = DetectionValidator(args=...)
val(model=trained_model)
# Validator
val = DetectionValidator(args=...)
val(model=trained_model)
# predictor
pred = DetectionPredictor(overrides={})
pred(source=SOURCE, model=trained_model)
# predictor
pred = DetectionPredictor(overrides={})
pred(source=SOURCE, model=trained_model)
# resume from last weight
overrides["resume"] = trainer.last
trainer = detect.DetectionTrainer(overrides=overrides)
```
# resume from last weight
overrides["resume"] = trainer.last
trainer = detect.DetectionTrainer(overrides=overrides)
```
You can easily customize Trainers to support custom tasks or explore R&D ideas. Learn more about Customizing `Trainers`, `Validators` and `Predictors` to suit your project needs in the Customization Section.

Loading…
Cancel
Save