description: Lernen Sie, wie Sie die Geschwindigkeit und Genauigkeit von YOLOv8 über verschiedene Exportformate hinweg profilieren können; erhalten Sie Einblicke in mAP50-95, Genauigkeit_top5 Kennzahlen und mehr.
<imgwidth="1024"src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png"alt="Ultralytics YOLO-Ökosystem und Integrationen">
## Einführung
Nachdem Ihr Modell trainiert und validiert wurde, ist der nächste logische Schritt, seine Leistung in verschiedenen realen Szenarien zu bewerten. Der Benchmark-Modus in Ultralytics YOLOv8 dient diesem Zweck, indem er einen robusten Rahmen für die Beurteilung von Geschwindigkeit und Genauigkeit Ihres Modells über eine Reihe von Exportformaten hinweg bietet.
## Warum ist Benchmarking entscheidend?
- **Informierte Entscheidungen:** Erhalten Sie Einblicke in die Kompromisse zwischen Geschwindigkeit und Genauigkeit.
- **Ressourcenzuweisung:** Verstehen Sie, wie sich verschiedene Exportformate auf unterschiedlicher Hardware verhalten.
- **Optimierung:** Erfahren Sie, welches Exportformat die beste Leistung für Ihren spezifischen Anwendungsfall bietet.
- **Kosteneffizienz:** Nutzen Sie Hardware-Ressourcen basierend auf den Benchmark-Ergebnissen effizienter.
### Schlüsselmetriken im Benchmark-Modus
- **mAP50-95:** Für Objekterkennung, Segmentierung und Posenschätzung.
- **accuracy_top5:** Für die Bildklassifizierung.
- **Inferenzzeit:** Zeit, die für jedes Bild in Millisekunden benötigt wird.
### Unterstützte Exportformate
- **ONNX:** Für optimale CPU-Leistung
- **TensorRT:** Für maximale GPU-Effizienz
- **OpenVINO:** Für die Optimierung von Intel-Hardware
- **CoreML, TensorFlow SavedModel, und mehr:** Für vielfältige Deployment-Anforderungen.
* Exportieren Sie in ONNX oder OpenVINO für bis zu 3x CPU-Beschleunigung.
* Exportieren Sie in TensorRT für bis zu 5x GPU-Beschleunigung.
## Anwendungsbeispiele
Führen Sie YOLOv8n-Benchmarks auf allen unterstützten Exportformaten einschließlich ONNX, TensorRT usw. durch. Siehe den Abschnitt Argumente unten für eine vollständige Liste der Exportargumente.
Argumente wie `model`, `data`, `imgsz`, `half`, `device` und `verbose` bieten Benutzern die Flexibilität, die Benchmarks auf ihre spezifischen Bedürfnisse abzustimmen und die Leistung verschiedener Exportformate mühelos zu vergleichen.