description: Discover Ultralytics YOLOv8 - the latest in real-time object detection and image segmentation. Learn its features and maximize its potential in your projects.
<ahref="https://console.paperspace.com/github/ultralytics/ultralytics"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a>
<ahref="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a>
<ahref="https://www.kaggle.com/ultralytics/yolov8"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
</div>
Introducing [Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics), the latest version of the acclaimed real-time object detection and image segmentation model. YOLOv8 is built on cutting-edge advancements in deep learning and computer vision, offering unparalleled performance in terms of speed and accuracy. Its streamlined design makes it suitable for various applications and easily adaptable to different hardware platforms, from edge devices to cloud APIs.
Explore the YOLOv8 Docs, a comprehensive resource designed to help you understand and utilize its features and capabilities. Whether you are a seasoned machine learning practitioner or new to the field, this hub aims to maximize YOLOv8's potential in your projects
<strong>Watch:</strong> How to Train a YOLOv8 model on Your Custom Dataset in <ahref="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"target="_blank">Google Colab</a>.
[YOLO](https://arxiv.org/abs/1506.02640) (You Only Look Once), a popular object detection and image segmentation model, was developed by Joseph Redmon and Ali Farhadi at the University of Washington. Launched in 2015, YOLO quickly gained popularity for its high speed and accuracy.
- [YOLOv2](https://arxiv.org/abs/1612.08242), released in 2016, improved the original model by incorporating batch normalization, anchor boxes, and dimension clusters.
- [YOLOv3](https://pjreddie.com/media/files/papers/YOLOv3.pdf), launched in 2018, further enhanced the model's performance using a more efficient backbone network, multiple anchors and spatial pyramid pooling.
- [YOLOv4](https://arxiv.org/abs/2004.10934) was released in 2020, introducing innovations like Mosaic data augmentation, a new anchor-free detection head, and a new loss function.
- [YOLOv5](https://github.com/ultralytics/yolov5) further improved the model's performance and added new features such as hyperparameter optimization, integrated experiment tracking and automatic export to popular export formats.
- [YOLOv6](https://github.com/meituan/YOLOv6) was open-sourced by [Meituan](https://about.meituan.com/) in 2022 and is in use in many of the company's autonomous delivery robots.
- [YOLOv8](https://github.com/ultralytics/ultralytics) is the latest version of YOLO by Ultralytics. As a cutting-edge, state-of-the-art (SOTA) model, YOLOv8 builds on the success of previous versions, introducing new features and improvements for enhanced performance, flexibility, and efficiency. YOLOv8 supports a full range of vision AI tasks, including [detection](tasks/detect.md), [segmentation](tasks/segment.md), [pose estimation](tasks/pose.md), [tracking](modes/track.md), and [classification](tasks/classify.md). This versatility allows users to leverage YOLOv8's capabilities across diverse applications and domains.
- [YOLOv9](models/yolov9.md) introduces innovative methods like Programmable Gradient Information (PGI) and the Generalized Efficient Layer Aggregation Network (GELAN).
- [YOLOv10](models/yolov10.md) is created by researchers from [Tsinghua University](https://www.tsinghua.edu.cn/en/) using the [Ultralytics](https://ultralytics.com/) [Python package](https://pypi.org/project/ultralytics/). This version introduces an real-time [object detection](tasks/detect.md) advancements by introducing an End-to-End head that eliminates Non-Maximum Suppression (NMS) requirements.
- **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/licenses/) open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for more details.
- **Enterprise License**: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through [Ultralytics Licensing](https://ultralytics.com/license).
Our licensing strategy is designed to ensure that any improvements to our open-source projects are returned to the community. We hold the principles of open source close to our hearts ❤️, and our mission is to guarantee that our contributions can be utilized and expanded upon in ways that are beneficial to all.