You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

132 lines
4.6 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
import sys
from unittest import mock
from tests import MODEL
from ultralytics import YOLO
from ultralytics.cfg import get_cfg
from ultralytics.engine.exporter import Exporter
from ultralytics.models.yolo import classify, detect, segment
from ultralytics.utils import ASSETS, DEFAULT_CFG, WEIGHTS_DIR
def test_func(*args): # noqa
"""Test function callback."""
print("callback test passed")
def test_export():
"""Test model exporting functionality."""
exporter = Exporter()
exporter.add_callback("on_export_start", test_func)
assert test_func in exporter.callbacks["on_export_start"], "callback test failed"
f = exporter(model=YOLO("yolov8n.yaml").model)
YOLO(f)(ASSETS) # exported model inference
def test_detect():
"""Test object detection functionality."""
overrides = {"data": "coco8.yaml", "model": "yolov8n.yaml", "imgsz": 32, "epochs": 1, "save": False}
cfg = get_cfg(DEFAULT_CFG)
cfg.data = "coco8.yaml"
cfg.imgsz = 32
# Trainer
trainer = detect.DetectionTrainer(overrides=overrides)
trainer.add_callback("on_train_start", test_func)
assert test_func in trainer.callbacks["on_train_start"], "callback test failed"
trainer.train()
# Validator
val = detect.DetectionValidator(args=cfg)
val.add_callback("on_val_start", test_func)
assert test_func in val.callbacks["on_val_start"], "callback test failed"
val(model=trainer.best) # validate best.pt
# Predictor
pred = detect.DetectionPredictor(overrides={"imgsz": [64, 64]})
pred.add_callback("on_predict_start", test_func)
assert test_func in pred.callbacks["on_predict_start"], "callback test failed"
# Confirm there is no issue with sys.argv being empty.
with mock.patch.object(sys, "argv", []):
result = pred(source=ASSETS, model=MODEL)
assert len(result), "predictor test failed"
overrides["resume"] = trainer.last
trainer = detect.DetectionTrainer(overrides=overrides)
try:
trainer.train()
except Exception as e:
print(f"Expected exception caught: {e}")
return
Exception("Resume test failed!")
def test_segment():
"""Test image segmentation functionality."""
overrides = {"data": "coco8-seg.yaml", "model": "yolov8n-seg.yaml", "imgsz": 32, "epochs": 1, "save": False}
cfg = get_cfg(DEFAULT_CFG)
cfg.data = "coco8-seg.yaml"
cfg.imgsz = 32
# YOLO(CFG_SEG).train(**overrides) # works
# Trainer
trainer = segment.SegmentationTrainer(overrides=overrides)
trainer.add_callback("on_train_start", test_func)
assert test_func in trainer.callbacks["on_train_start"], "callback test failed"
trainer.train()
# Validator
val = segment.SegmentationValidator(args=cfg)
val.add_callback("on_val_start", test_func)
assert test_func in val.callbacks["on_val_start"], "callback test failed"
val(model=trainer.best) # validate best.pt
# Predictor
pred = segment.SegmentationPredictor(overrides={"imgsz": [64, 64]})
pred.add_callback("on_predict_start", test_func)
assert test_func in pred.callbacks["on_predict_start"], "callback test failed"
result = pred(source=ASSETS, model=WEIGHTS_DIR / "yolov8n-seg.pt")
assert len(result), "predictor test failed"
# Test resume
overrides["resume"] = trainer.last
trainer = segment.SegmentationTrainer(overrides=overrides)
try:
trainer.train()
except Exception as e:
print(f"Expected exception caught: {e}")
return
Exception("Resume test failed!")
def test_classify():
"""Test image classification functionality."""
overrides = {"data": "imagenet10", "model": "yolov8n-cls.yaml", "imgsz": 32, "epochs": 1, "save": False}
cfg = get_cfg(DEFAULT_CFG)
cfg.data = "imagenet10"
cfg.imgsz = 32
# YOLO(CFG_SEG).train(**overrides) # works
# Trainer
trainer = classify.ClassificationTrainer(overrides=overrides)
trainer.add_callback("on_train_start", test_func)
assert test_func in trainer.callbacks["on_train_start"], "callback test failed"
trainer.train()
# Validator
val = classify.ClassificationValidator(args=cfg)
val.add_callback("on_val_start", test_func)
assert test_func in val.callbacks["on_val_start"], "callback test failed"
val(model=trainer.best)
# Predictor
pred = classify.ClassificationPredictor(overrides={"imgsz": [64, 64]})
pred.add_callback("on_predict_start", test_func)
assert test_func in pred.callbacks["on_predict_start"], "callback test failed"
result = pred(source=ASSETS, model=trainer.best)
assert len(result), "predictor test failed"